You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

156 lines
5.4 KiB
Python

This file contains ambiguous Unicode characters!

This file contains ambiguous Unicode characters that may be confused with others in your current locale. If your use case is intentional and legitimate, you can safely ignore this warning. Use the Escape button to highlight these characters.

import numpy as np
import pandas as pd
import torch
from torch import nn
from multiprocessing import Pool
import matplotlib.pyplot as plt
import os
os.environ["KMP_DUPLICATE_LIB_OK"]="TRUE"
DAYS_FOR_TRAIN = 10
torch.manual_seed(42)
class LSTM_Regression(nn.Module):
def __init__(self, input_size, hidden_size, output_size=1, num_layers=2):
super().__init__()
self.lstm = nn.LSTM(input_size, hidden_size, num_layers)
self.fc = nn.Linear(hidden_size, output_size)
def forward(self, _x):
x, _ = self.lstm(_x) # _x is input, size (seq_len, batch, input_size)
s, b, h = x.shape # x is output, size (seq_len, batch, hidden_size)
x = x.view(s * b, h)
x = self.fc(x)
x = x.view(s, b, -1) # 把形状改回来
return x
def create_dataset(data, days_for_train=5) -> (np.array, np.array):
dataset_x, dataset_y = [], []
for i in range(len(data) - days_for_train):
_x = data[i:(i + days_for_train)]
dataset_x.append(_x)
dataset_y.append(data[i + days_for_train])
return (np.array(dataset_x), np.array(dataset_y))
def normal(nd):
high = nd.describe()['75%'] + 1.5*(nd.describe()['75%']-nd.describe()['25%'])
low = nd.describe()['25%'] - 1.5*(nd.describe()['75%']-nd.describe()['25%'])
return nd[(nd<high)&(nd>low)]
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
data = pd.read_excel(r'C:\Users\鸽子\Desktop\浙江133行业日电量数据.xlsx', sheet_name=0,index_col=' stat_date ')
data.columns = data.columns.map(lambda x: x.strip())
data.index = pd.to_datetime(data.index,format='%Y%m%d')
data.sort_index(inplace=True)
# print(data.head())
data = data.loc['2021-01':'2023-09']
data.drop(columns=[i for i in data.columns if (data[i] == 0).sum() / len(data) >= 0.5], inplace=True) # 去除0值列
# print('len(data):', len(data))
df_result = pd.DataFrame({'预测值':[],'实际值':[],'偏差率':[],'行业':[]})
for industry in data.columns:
df = data[industry]
df = df[df.values != 0] # 去除0值行
df = normal(df)
df = df.astype('float32').values # 转换数据类型
# 标准化到0~1
max_value = np.max(df)
min_value = np.min(df)
df = (df - min_value) / (max_value - min_value)
dataset_x, dataset_y = create_dataset(df, DAYS_FOR_TRAIN)
# print('len(dataset_x:)', len(dataset_x))
# 划分训练集和测试集
train_size = len(dataset_x) - 3
train_x = dataset_x[:train_size]
train_y = dataset_y[:train_size]
# 将数据改变形状RNN 读入的数据维度是 (seq_size, batch_size, feature_size)
train_x = train_x.reshape(-1, 1, DAYS_FOR_TRAIN)
train_y = train_y.reshape(-1, 1, 1)
# 转为pytorch的tensor对象
train_x = torch.from_numpy(train_x).to(device)
train_y = torch.from_numpy(train_y).to(device)
model = LSTM_Regression(DAYS_FOR_TRAIN, 32, output_size=1, num_layers=2).to(device) # 导入模型并设置模型的参数输入输出层、隐藏层等
train_loss = []
loss_function = nn.MSELoss()
optimizer = torch.optim.Adam(model.parameters(), lr=0.005, betas=(0.9, 0.999), eps=1e-08, weight_decay=0)
for i in range(2000):
out = model(train_x)
loss = loss_function(out, train_y)
loss.backward()
optimizer.step()
optimizer.zero_grad()
train_loss.append(loss.item())
# print(loss)
# 保存模型
# torch.save(model.state_dict(),save_filename)
# torch.save(model.state_dict(),os.path.join(model_save_dir,model_file))
# for test
model = model.eval() # 转换成测试模式
# model.load_state_dict(torch.load(os.path.join(model_save_dir,model_file))) # 读取参数
dataset_x = dataset_x.reshape(-1, 1, DAYS_FOR_TRAIN) # (seq_size, batch_size, feature_size)
dataset_x = torch.from_numpy(dataset_x).to(device)
pred_test = model(dataset_x) # 全量训练集
# 模型输出 (seq_size, batch_size, output_size)
pred_test = pred_test.view(-1)
pred_test = np.concatenate((np.zeros(DAYS_FOR_TRAIN), pred_test.cpu().detach().numpy()))
# plt.plot(pred_test, 'r', label='prediction')
# plt.plot(df, 'b', label='real')
# plt.plot((train_size, train_size), (0, 1), 'g--') # 分割线 左边是训练数据 右边是测试数据的输出
# plt.legend(loc='best')
# plt.show()
# 创建测试集
result_list = []
# 以x为基础实际数据滚动预测未来3天
x = torch.from_numpy(df[-14:-4]).to(device)
for i in range(3):
next_1_8 = x[1:]
next_9 = model(x.reshape(-1,1,DAYS_FOR_TRAIN))
# print(next_9,next_1_8)
x = torch.concatenate((next_1_8, next_9.view(-1)))
result_list.append(next_9.view(-1).item())
# 反归一化
pred = np.array(result_list) * (max_value - min_value) + min_value
df = df * (max_value - min_value) + min_value
# 打印指标
# print(abs(pred - df[-3:]).mean() / df[-3:].mean())
result_eight = pd.DataFrame({'预测值': np.round(pred,1),'实际值': df[-3:]})
target = (result_eight['预测值'].sum() - result_eight['实际值'].sum()) / df[-31:].sum()
result_eight['偏差率'] = round(target, 5)
result_eight['行业'] = industry
df_result = pd.concat((df_result,result_eight))
print(df_result)
# result_eight.to_csv(f'9月{excel[:2]}.txt', sep='\t', mode='a')
# with open(fr'./偏差/9月底偏差率.txt', 'a', encoding='utf-8') as f:
# f.write(f'{excel[:2]}{industry}:{round(target, 5)}\n')