import pandas as pd from sklearn.model_selection import train_test_split import os from sklearn.metrics import r2_score import xgboost as xgb import matplotlib.pyplot as plt pd.set_option('display.width',None) def normal(s1): high = s1.describe()['75%'] + 1.5*(s1.describe()['75%']-s1.describe()['25%']) low = s1.describe()['25%'] - 1.5 * (s1.describe()['75%'] - s1.describe()['25%']) return s1[(s1>=low)&(s1<=high)] df = pd.read_csv('区县400v入模数据.csv',encoding='gbk',index_col='dtdate') df.index = pd.to_datetime(df.index) print(df.head()) list_org = [] list_fl = [] list_sc = [] for org_name in df['org_name'].drop_duplicates(): data = df[df['org_name']==org_name] if org_name.strip()[-4:] != '供电公司': continue data = data.loc[normal(data['0.4kv及以下']).index] X = data.drop(columns=['city_name','org_name','0.4kv及以下']) x = X.loc['2022-1':'2023-7'][:-3] x_eval = X.loc['2023-7'] y = data['0.4kv及以下'].loc['2022-1':'2023-7'][:-3] y_eval = data['0.4kv及以下'].loc['2023-7'] # plt.plot(range(len(y)),y) # plt.show() x_train,x_test,y_train,y_test = train_test_split(x,y,test_size=0.3,random_state=42) model = xgb.XGBRegressor(max_depth=6,learning_rate=0.05,n_estimators=150) model.fit(x_train,y_train) pred = model.predict(x_test) # print(org_name) list_org.append(org_name) # print(r2_score(pred,y_test)) list_sc.append(r2_score(pred,y_test)) predict = model.predict(x_eval) result = pd.DataFrame({'real':y_eval,'pred':predict},index=y_eval.index) # print(result) # print((result['real'][-3:]-result['pred'][-3:]).sum()/result['real'].sum()) list_fl.append((result['real'][-3:]-result['pred'][-3:]).sum()/result['real'].sum()) df = pd.DataFrame({'org':list_org,'sc':list_sc,'goal':list_fl}) print(df) print(df['goal'].value_counts(bins=[-0.05,-0.01,-0.005,0, 0.005, 0.01, 0.02,0.05],sort=False))