import numpy as np import pandas as pd from prophet import Prophet import math import matplotlib.pyplot as plt import os from openpyxl import Workbook pd.set_option('display.width',None) def normal(x): high = x.describe()['75%'] + 1.5*(x.describe()['75%']-x.describe()['25%']) low = x.describe()['25%'] - 1.5*(x.describe()['75%']-x.describe()['25%']) return (x<=high)&(x>=low) df = pd.read_csv(r'C:\Users\鸽子\Desktop\浙江各区县数据(2).csv') df.columns = df.columns.map(lambda x:x.strip()) df.dropna(subset=['city_name','county_name'],inplace=True) print(df.info()) print(df.columns) print(dict(zip(df.columns,[(df[x]==0).sum()/len(df) for x in df.columns]))) yc_org_list = [] list_fl = [] list_org = [] list1 = [] for city in df['city_name'].drop_duplicates(): wb = Workbook() wb.save(fr'C:\Users\鸽子\Desktop\11月区县分压预测\{city}.xlsx') for org in df['county_name'].drop_duplicates(): if org.strip()[-4:] != '供电公司': continue df_org = df[df['county_name']==org] city = df_org['city_name'].iloc[0] df_result = pd.DataFrame({}) for level in df_org.columns[3:]: s1 = df_org[['pt_date',level]] s1.replace(0,np.NaN,inplace=True) s1.dropna(how='any',inplace=True) # 更改列名,更改为Prophet指定的列名ds和y dd = s1.rename(columns={'pt_date':'ds',level:'y'}) dd['ds'] = dd['ds'].map(lambda x:x.strip()) dd['ds'] = pd.to_datetime(dd['ds']) dd.drop_duplicates(inplace=True) # 划分数据,划分为训练集和验证集,预测的数据设置为未来4天 df_train = dd[(dd['ds']>='2023-01-01')&(dd['ds']<='2023-11-30')] # df_train = df_train.loc[normal(df_train['y']).index] df_train['y'] = df_train['y'].where(normal(df_train['y']),other=np.nan).bfill() if df_train.shape[0] <= 90: yc_org_list.append(org) continue # df_test = dd[(dd['ds']>='2022-01-01')&(dd['ds']<='2023-07-31')][-3:] # 数据的变动会受到季节、周、天的影响,存在一定的规律性,因此我们将这三个参数设置为True model = Prophet(yearly_seasonality=True, weekly_seasonality=True, daily_seasonality=True) # 采用中国的假期模式,其余参数均保持默认 model.add_country_holidays(country_name="CN") model.fit(df_train) # make_future_dataframe: 作用是告诉模型我们要预测多长时间,以及时间的周期是什么。生成一个时间戳 future = model.make_future_dataframe(periods=4, freq='D') # 进行预测,返回预测的结果forecast forecast = model.predict(future) # forecast['additive_terms'] = forecast['weekly'] + forecast['yearly']; # 有:forecast['yhat'] = forecast['trend'] + forecast['additive_terms'] 。 # 因此:forecast['yhat'] = forecast['trend'] +forecast['weekly'] + forecast['yearly']。 # 如果有节假日因素,那么就会有forecast['yhat'] = forecast['trend'] +forecast['weekly'] + forecast['yearly'] + forecast['holidays']。 # 测试,把ds列,即data_series列设置为索引列 # df_test = df_test.set_index('ds') # 把预测到的数据取出ds列,预测值列yhat,同样把ds列设置为索引列。 forecast = forecast[['ds','yhat']].set_index('ds').sort_index(ascending=True).loc['2023-11'] # 将预测列前25天替换为真实值 forecast.loc['2023-11'][:25] = dd.set_index('ds').loc['2023-11'][:25] if len(forecast) < 334: list1.append(org) # join:按照索引进行连接, forecast.columns = [level] df_result = pd.concat([df_result,forecast],axis=1) # df_all = forecast.join(dd.set_index('ds')).dropna() # df_all['org_name'] = org # df_all['偏差率'] = (df_all['y'] - df_all['yhat'])/df_all['y'] # df_all.rename(columns={'y':'真实值','yhat':'预测值'},inplace=True) # df_all = df_all[['org_name','真实值','预测值','偏差率']] list_org.append(org) # result = df_all.loc['2023-7'] # result['goal'] = (result['真实值'] - result['预测值'])[-3:].sum()/result['真实值'].sum() # list_fl.append((result['真实值'] - result['预测值'])[-3:].sum()/result['真实值'].sum()) with pd.ExcelWriter(fr'C:\Users\鸽子\Desktop\11月区县分压预测\{city}.xlsx',mode='a',engine='openpyxl',if_sheet_exists='replace') as writer: df_result.to_excel(writer,sheet_name=f'{org}') print(yc_org_list) df = pd.DataFrame({'org':list_org,'goal':list_fl}) print(df) print(df['goal'].value_counts(bins=[-0.05,-0.01,-0.005,0, 0.005, 0.01, 0.02,0.05],sort=False)) # # 创建一个ExcelWriter对象 # with pd.ExcelWriter(r'C:\Users\鸽子\Desktop\output.xlsx',mode='a',if_sheet_exists='replace') as writer: # # 将不同的子文件写入同一个Excel文件的不同工作表 # df_all.to_excel(writer, sheet_name=f'Sheet{i+1}') # df_all.plot() # # 设置左上角小标 # plt.legend(['true', 'yhat']) # plt.show()