import pandas as pd df = pd.read_excel(r'C:\Users\鸽子\Desktop\浙江电量20231202.xlsx', sheet_name=1) df['pt_date'] = pd.to_datetime(df['pt_date']) # 移动平均 dict_big = {} dict_ok = {} # for city in df['city_name'].drop_duplicates(): # # df_city1 = df[(df['city_name'] == city) & (df['county_name'].isnull())].set_index('pt_date').loc['2023-11'] # resut_df = pd.DataFrame({}) # index_level = [] # tq_list = [] # pred_list = [] # loss_list = [] # rate_list = [] # for level in df_city1.columns[2:]: # # index_level.append(level) # # df_moving_avg = pd.DataFrame(df_city1[:-3][level], index=df_city1[:-3].index) # future = pd.date_range(start=df_city1.index[-3], periods=3, freq='D') # # for date in future: # df_moving_avg.loc[date, level] = df_moving_avg[-3:].mean().values # loss = (df_city1[level].tail(-3).sum() - df_moving_avg.tail(-3).sum()) / df_city1[level].sum() # tq_list.append(df_city1[level].sum()) # pred_list.append(df_moving_avg[level].sum()) # loss_list.append(df_city1[level].sum()-df_moving_avg[level].sum()) # rate_list.append((df_city1[level].sum()-df_moving_avg[level].sum())/df_city1[level].sum()) # resut_df = pd.DataFrame({'同期电量':tq_list,'预测电量':pred_list,'偏差':loss_list,'偏差率':rate_list},index=index_level) # with pd.ExcelWriter(r'C:\Users\鸽子\Desktop\11月移动平均分压.xlsx',mode='a',if_sheet_exists='replace',engine='openpyxl') as writer: # resut_df.to_excel(writer,sheet_name=f'{city[4:6]}') excel_file = pd.ExcelFile(r'C:\Users\鸽子\Desktop\11月移动平均分压.xlsx') df1 = pd.read_excel(excel_file,sheet_name=1) df1.set_index(df1.columns[0],inplace=True) for sheet in excel_file.sheet_names[2:]: df = pd.read_excel(excel_file,sheet_name=sheet) df.set_index(df.columns[0],inplace=True) df1 += df df1['偏差'] = df1['同期电量']-df1['预测电量'] df1['偏差率'] = df1['偏差']/df1['同期电量'] df1.to_excel('移动平均_11月分压汇总.xlsx') print(df1)