import pandas as pd import matplotlib.pyplot as plt import xgboost as xgb from sklearn.model_selection import train_test_split from sklearn.metrics import r2_score def normal(x): high = x.describe()['75%'] + 1.5*(x.describe()['75%']-x.describe()['25%']) low = x.describe()['25%'] - 1.5*(x.describe()['75%']-x.describe()['25%']) return x[(x<=high)&(x>=low)] def season(x): if str(x)[5:7] in ('04', '05', '06', '11'): return 0 elif str(x)[5:7] in ('01', '02', '03', '09', '10', '12'): return 1 else: return 2 df = pd.read_excel('../400v入模数据/衢州.xlsx',index_col='stat_date') df.index = pd.to_datetime(df.index) x_train = df.loc['2021-7':'2023-7'][:-3].drop(columns='0.4kv及以下') y_train = df.loc['2021-7':'2023-7'][:-3]['0.4kv及以下'] x_eval = df.loc['2023-7'].drop(columns='0.4kv及以下') y_eval = df.loc['2023-7']['0.4kv及以下'] x_train,x_test,y_train,y_test = train_test_split(x_train,y_train,test_size=0.2,random_state=142) model = xgb.XGBRegressor(max_depth=6,learning_rate=0.05,n_estimators=150) model.fit(x_train,y_train) y_pred = model.predict(x_test) print(r2_score(y_test,y_pred)) predict = model.predict(x_eval) result = pd.DataFrame({'eval':y_eval,'pred':predict},index=y_eval.index) print(result) print((result['eval'][-3:].sum()-result['pred'][-3:].sum())/result['eval'].sum())