更新电压lstm模型

main
get 1 year ago
parent 7f387ebb78
commit f8969d4f06

@ -17,6 +17,7 @@ for city in df['地市'].drop_duplicates():
df_city['stat_date'] = df_city['stat_date'].map(lambda x:x.strip()) df_city['stat_date'] = df_city['stat_date'].map(lambda x:x.strip())
df_city['stat_date'] = pd.to_datetime(df_city['stat_date'],format='%Y-%m-%d') df_city['stat_date'] = pd.to_datetime(df_city['stat_date'],format='%Y-%m-%d')
df_city = df_city[df_city.columns[:-1]] df_city = df_city[df_city.columns[:-1]]
df_city.sort_values(by='stat_date',ascending=True,inplace=True)
df_city['stat_date'] = df_city['stat_date'].astype('str') df_city['stat_date'] = df_city['stat_date'].astype('str')
df_city.to_excel(fr'C:\Users\user\Desktop\浙江各地市分电压日电量数据\{city}.xlsx',index=False) df_city.to_excel(fr'C:\Users\user\Desktop\浙江各地市分电压日电量数据\{city}.xlsx',index=False)
# file_Dir = r'C:\Users\鸽子\Desktop\浙江各地市行业电量数据' # file_Dir = r'C:\Users\鸽子\Desktop\浙江各地市行业电量数据'

@ -52,120 +52,119 @@ def data_preprocessing(data):
return data return data
# 拼接数据集 # 拼接数据集
file_dir = r'C:\Users\user\Desktop\浙江各地市分电压日电量数据' # file_dir = r'C:\Users\user\Desktop\浙江各地市分电压日电量数据'
excel = os.listdir(file_dir)[0] # excel = os.listdir(file_dir)[0]
data = pd.read_excel(os.path.join(file_dir, excel), sheet_name=0, index_col='stat_date') # data = pd.read_excel(os.path.join(file_dir, excel), sheet_name=0, index_col='stat_date')
data.drop(columns='地市',inplace=True) # data.drop(columns='地市',inplace=True)
data = data_preprocessing(data) # data = data_preprocessing(data)
#
df = data[data.columns[0]] # df = data[data.columns[0]]
df.dropna(inplace = True) # df.dropna(inplace = True)
dataset_x, dataset_y = create_dataset(df, DAYS_FOR_TRAIN) # dataset_x, dataset_y = create_dataset(df, DAYS_FOR_TRAIN)
#
for level in data.columns[1:]: # for level in data.columns[1:]:
df = data[level] # df = data[level]
df.dropna(inplace=True) # df.dropna(inplace=True)
x, y = create_dataset(df, DAYS_FOR_TRAIN) # x, y = create_dataset(df, DAYS_FOR_TRAIN)
dataset_x = np.concatenate((dataset_x, x)) # dataset_x = np.concatenate((dataset_x, x))
dataset_y = np.concatenate((dataset_y, y)) # dataset_y = np.concatenate((dataset_y, y))
#
#
for excel in os.listdir(file_dir)[1:]: # for excel in os.listdir(file_dir)[1:]:
#
data = pd.read_excel(os.path.join(file_dir,excel), sheet_name=0,index_col='stat_date') # data = pd.read_excel(os.path.join(file_dir,excel), sheet_name=0,index_col='stat_date')
data.drop(columns='地市', inplace=True) # data.drop(columns='地市', inplace=True)
data = data_preprocessing(data) # data = data_preprocessing(data)
#
for level in data.columns: # for level in data.columns:
df = data[level] # df = data[level]
df.dropna(inplace=True) # df.dropna(inplace=True)
x,y = create_dataset(df,DAYS_FOR_TRAIN) # x,y = create_dataset(df,DAYS_FOR_TRAIN)
dataset_x = np.concatenate((dataset_x,x)) # dataset_x = np.concatenate((dataset_x,x))
dataset_y = np.concatenate((dataset_y,y)) # dataset_y = np.concatenate((dataset_y,y))
#
#
#
# 训练 # # 训练
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
#
# 标准化到0~1 # # 标准化到0~1
max_value = np.max(dataset_x) # max_value = np.max(dataset_x)
min_value = np.min(dataset_x) # min_value = np.min(dataset_x)
dataset_x = (dataset_x - min_value) / (max_value - min_value) # dataset_x = (dataset_x - min_value) / (max_value - min_value)
dataset_y = (dataset_y - min_value) / (max_value - min_value) # dataset_y = (dataset_y - min_value) / (max_value - min_value)
#
print(max_value,min_value) # print(max_value,min_value)
# 划分训练集和测试集 # # 划分训练集和测试集
train_size = int(len(dataset_x)*0.7) # train_size = int(len(dataset_x)*0.7)
train_x = dataset_x[:train_size] # train_x = dataset_x[:train_size]
train_y = dataset_y[:train_size] # train_y = dataset_y[:train_size]
#
# 将数据改变形状RNN 读入的数据维度是 (seq_size, batch_size, feature_size) # # 将数据改变形状RNN 读入的数据维度是 (seq_size, batch_size, feature_size)
train_x = train_x.reshape(-1, 1, DAYS_FOR_TRAIN) # train_x = train_x.reshape(-1, 1, DAYS_FOR_TRAIN)
train_y = train_y.reshape(-1, 1, 5) # train_y = train_y.reshape(-1, 1, 5)
#
# 转为pytorch的tensor对象 # # 转为pytorch的tensor对象
train_x = torch.from_numpy(train_x).to(device).type(torch.float32) # train_x = torch.from_numpy(train_x).to(device).type(torch.float32)
train_y = torch.from_numpy(train_y).to(device).type(torch.float32) # train_y = torch.from_numpy(train_y).to(device).type(torch.float32)
model = LSTM_Regression(DAYS_FOR_TRAIN, 32, output_size=5, num_layers=2).to(device) # 导入模型并设置模型的参数输入输出层、隐藏层等 model = LSTM_Regression(DAYS_FOR_TRAIN, 32, output_size=5, num_layers=2).to(device) # 导入模型并设置模型的参数输入输出层、隐藏层等
train_loss = [] # train_loss = []
loss_function = nn.MSELoss() # loss_function = nn.MSELoss()
optimizer = torch.optim.Adam(model.parameters(), lr=0.005, betas=(0.9, 0.999), eps=1e-08, weight_decay=0) # optimizer = torch.optim.Adam(model.parameters(), lr=0.005, betas=(0.9, 0.999), eps=1e-08, weight_decay=0)
for i in range(1500): # for i in range(1500):
out = model(train_x) # out = model(train_x)
loss = loss_function(out, train_y) # loss = loss_function(out, train_y)
loss.backward() # loss.backward()
optimizer.step() # optimizer.step()
optimizer.zero_grad() # optimizer.zero_grad()
train_loss.append(loss.item()) # train_loss.append(loss.item())
#
# 保存模型 # # 保存模型
torch.save(model.state_dict(),'dy5.pth') # torch.save(model.state_dict(),'dy5.pth')
#
# for test # # for test
model = model.eval() # 转换成测试模式 # model = model.eval() # 转换成测试模式
# model.load_state_dict(torch.load(os.path.join(model_save_dir,model_file))) # 读取参数 # # model.load_state_dict(torch.load(os.path.join(model_save_dir,model_file))) # 读取参数
dataset_x = dataset_x.reshape(-1, 1, DAYS_FOR_TRAIN) # (seq_size, batch_size, feature_size) # dataset_x = dataset_x.reshape(-1, 1, DAYS_FOR_TRAIN) # (seq_size, batch_size, feature_size)
dataset_x = torch.from_numpy(dataset_x).to(device).type(torch.float32) # dataset_x = torch.from_numpy(dataset_x).to(device).type(torch.float32)
#
pred_test = model(dataset_x) # 全量训练集 # pred_test = model(dataset_x) # 全量训练集
# 模型输出 (seq_size, batch_size, output_size) # # 模型输出 (seq_size, batch_size, output_size)
pred_test = pred_test.view(-1) # pred_test = pred_test.view(-1)
pred_test = np.concatenate((np.zeros(DAYS_FOR_TRAIN), pred_test.cpu().detach().numpy())) # pred_test = np.concatenate((np.zeros(DAYS_FOR_TRAIN), pred_test.cpu().detach().numpy()))
#
plt.plot(pred_test.reshape(-1), 'r', label='prediction') # plt.plot(pred_test.reshape(-1), 'r', label='prediction')
plt.plot(dataset_y.reshape(-1), 'b', label='real') # plt.plot(dataset_y.reshape(-1), 'b', label='real')
plt.plot((train_size*5, train_size*5), (0, 1), 'g--') # 分割线 左边是训练数据 右边是测试数据的输出 # plt.plot((train_size*5, train_size*5), (0, 1), 'g--') # 分割线 左边是训练数据 右边是测试数据的输出
plt.legend(loc='best') # plt.legend(loc='best')
plt.show() # plt.show()
# 创建测试集 # 创建测试集
max_value,min_value = 192751288.47,0.0
# max_value,min_value = 192751288.47,0.0 model.load_state_dict(torch.load('dy5.pth',map_location=torch.device('cpu')))
# model.load_state_dict(torch.load('dy5.pth',map_location=torch.device('cpu'))) file_dir = r'C:\Users\user\Desktop\浙江各地市分电压日电量数据'
# file_dir = r'C:\Users\user\Desktop\浙江各地市分电压日电量数据' for excel in os.listdir(file_dir):
# for excel in os.listdir(file_dir): df_city = pd.read_excel(os.path.join(file_dir,excel))
# df_city = pd.read_excel(os.path.join(file_dir,excel)) df_city.drop(columns=[i for i in df_city.columns if (df_city[i] == 0).sum() / len(df_city) >= 0.5], inplace=True)
# df_city.drop(columns=[i for i in df_city.columns if (df_city[i] == 0).sum() / len(df_city) >= 0.5], inplace=True)
# city = df_city['地市'].iloc[0]
# city = df_city['地市'].iloc[0] result_dict = {}
# result_dict = {} for level in df_city.columns[2:]:
# for level in df_city.columns[2:]: x, y = create_dataset(df_city[level], 10)
# x, y = create_dataset(df_city[level], 10) x = (x - min_value) / (max_value - min_value)
# x = (x - min_value) / (max_value - min_value) x = x.reshape(-1, 1, 10)
# x = x.reshape(-1, 1, 10) x = torch.from_numpy(x).type(torch.float32).to(device)
# x = torch.from_numpy(x).type(torch.float32).to(device) pred = model(x).view(-1)
# pred = model(x).view(-1) pred = pred * (max_value - min_value) + min_value
# pred = pred * (max_value - min_value) + min_value result = pred.cpu().detach().numpy()[-5:-2]
# result = pred.detach().numpy()[-5:-2] result_dict[level] = list(result)
# result_dict[level] = list(result) df = pd.DataFrame(result_dict,index=['2023-10-29','2023-10-30','2023-10-31'])
# df = pd.DataFrame(result_dict,index=['2023-10-29','2023-10-30','2023-10-31']) df.to_excel(fr'C:\Users\user\Desktop\分压电量预测29-31\{city} .xlsx')
# df.to_excel(fr'C:\Users\鸽子\Desktop\分压电量预测29-31\{city}.xlsx') print(result_dict)
# print(result_dict)

Loading…
Cancel
Save