输出预测结果
parent
f8969d4f06
commit
dfaab93f61
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
@ -0,0 +1,48 @@
|
|||||||
|
import pandas as pd
|
||||||
|
import math
|
||||||
|
import datetime
|
||||||
|
import chinese_calendar as cc
|
||||||
|
|
||||||
|
df = pd.read_excel(r'C:\Users\鸽子\Desktop\浙江各地市气象数据 .xlsx')
|
||||||
|
df.columns = df.columns.map(lambda x:x.strip())
|
||||||
|
df['dtdate'] = pd.to_datetime(df['dtdate'],format='%Y%m%d').astype('str')
|
||||||
|
df['city_name'] = df['city_name'].map(lambda x:x.strip())
|
||||||
|
df['city_name'] = df['city_name'].str[:-1]
|
||||||
|
df['dtdate'] = df['dtdate'].map(lambda x:x.strip())
|
||||||
|
def holiday_work(x):
|
||||||
|
if cc.is_workday(x):
|
||||||
|
return 0
|
||||||
|
if cc.is_holiday(x):
|
||||||
|
return 1
|
||||||
|
def jq(y,x):
|
||||||
|
a=365.242 * (y - 1900) + 6.2 + 15.22 * x - 1.9 * math.sin(0.262 * x)
|
||||||
|
return datetime.date(1899,12,31)+datetime.timedelta(days=int(a))
|
||||||
|
# print(jq(2023,1))
|
||||||
|
jq_list=['小寒', '大寒', '立春', '雨水', '惊蛰', '春分', '清明', '谷雨', '立夏', '小满', '芒种', '夏至', '小暑', '大暑', '立秋', '处暑', '白露', '秋分', '寒露', '霜降', '立冬', '小雪', '大雪','冬至']
|
||||||
|
jq_dict={}
|
||||||
|
for j in range(2023,2024):
|
||||||
|
for i in range(24):
|
||||||
|
jq_dict[jq(j,i).strftime('%Y-%m-%d')]=jq_list[i]
|
||||||
|
# print(jq_dict)
|
||||||
|
df['24ST'] = df['dtdate'].map(jq_dict)
|
||||||
|
df.fillna(method='ffill',inplace=True)
|
||||||
|
df['24ST'].fillna('秋分',inplace=True)
|
||||||
|
df['holiday'] = pd.to_datetime(df['dtdate']).map(holiday_work)
|
||||||
|
print(df)
|
||||||
|
jq_dict = {'冬至': 0, '处暑': 1, '夏至': 2, '大寒': 3, '大暑': 4, '大雪': 5, '寒露': 6, '小寒': 7, '小暑': 8, '小满': 9, '小雪': 10, '惊蛰': 11, '春分': 12, '清明': 13, '白露': 14, '秋分': 15, '立冬': 16, '立夏': 17, '立春': 18, '立秋': 19, '芒种': 20, '谷雨': 21, '雨水': 22, '霜降': 23}
|
||||||
|
df_elec = pd.read_excel(r'C:\Users\鸽子\Desktop\浙江省各地市日电量及分压数据21-23年.xlsx',sheet_name=0)
|
||||||
|
df_elec.columns = df_elec.columns.map(lambda x:x.strip())
|
||||||
|
print(df_elec)
|
||||||
|
df_elec['stat_date'] = pd.to_datetime(df_elec['stat_date']).astype(str)
|
||||||
|
df_elec['地市'] = df_elec['地市'].map(lambda x:x.strip())
|
||||||
|
df_elec['stat_date'] = df_elec['stat_date'].map(lambda x:x.strip())
|
||||||
|
df_final = pd.merge(df,df_elec,left_on=['city_name','dtdate'],right_on=['地市','stat_date'],how='left')
|
||||||
|
df_final.drop(columns=['stat_date','地市'],inplace=True)
|
||||||
|
df_final.rename(columns={'power_sal':'售电量'},inplace=True)
|
||||||
|
df_final['24ST'] = df_final['24ST'].map(jq_dict)
|
||||||
|
df_final['售电量'] /= 10000
|
||||||
|
print(df_final)
|
||||||
|
df_final = df_final[['dtdate','city_name','tem_max','tem_min','holiday','24ST','售电量']]
|
||||||
|
for city in df_final['city_name'].drop_duplicates():
|
||||||
|
df_city = df_final[df_final['city_name']==city]
|
||||||
|
df_city.to_excel(fr'C:\Users\鸽子\Desktop\追加\{city} .xlsx',index=False)
|
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Loading…
Reference in New Issue