电压等级输出为5lstm

main
鸽子 1 year ago
parent bf4803a140
commit ddbf3e5d61

@ -1,4 +1,4 @@
<?xml version="1.0" encoding="UTF-8"?>
<project version="4">
<component name="ProjectRootManager" version="2" project-jdk-name="pytorch_gpu" project-jdk-type="Python SDK" />
<component name="ProjectRootManager" version="2" project-jdk-name="C:\anaconda\envs\pytorch" project-jdk-type="Python SDK" />
</project>

@ -2,7 +2,7 @@
<module type="PYTHON_MODULE" version="4">
<component name="NewModuleRootManager">
<content url="file://$MODULE_DIR$" />
<orderEntry type="jdk" jdkName="pytorch_gpu" jdkType="Python SDK" />
<orderEntry type="jdk" jdkName="C:\anaconda\envs\pytorch" jdkType="Python SDK" />
<orderEntry type="sourceFolder" forTests="false" />
</component>
</module>

@ -3,33 +3,37 @@ import pandas as pd
import matplotlib.pyplot as plt
import torch
from sklearn import preprocessing
from torch.utils.data import DataLoader,TensorDataset
data = pd.read_excel(r'C:\Users\user\PycharmProjects\pytorch2\入模数据\杭州数据.xlsx',index_col='dtdate')
data = pd.read_excel(r'C:\python-project\pytorch3\入模数据\杭州数据.xlsx',index_col='dtdate')
print(data.columns)
y = np.array(data['售电量']) # 制作标签,用于比对训练结果
x = data.drop(columns=['售电量','city_name']) # 在特征数据集中去掉label
# df.drop(label, axis=0)
# label要删除的列或者行如果要删除多个传入列表
# axis:轴的方向0为行1为列默认为0
fea_train = np.array(x) # 转换为ndarray格式
x = np.array(data.drop(columns=['售电量','city_name']).loc['2021-1':'2023-6'])
y = np.array(data['售电量'].loc['2021-1':'2023-6'])
# 数据标准化操作:(x-均值μ) / 标准差σ ,使数据关于原点对称,提升训练效率
input_features = preprocessing.StandardScaler().fit_transform(fea_train) # fit求出均值和标准差 transform求解
input_features = preprocessing.StandardScaler().fit_transform(np.array(x)) # fit求出均值和标准差 transform求解
# y归一化
min = np.min(y)
max = np.max(y)
y = (y - min)/(max - min)
x_eval = torch.from_numpy(data.drop(columns=['售电量','city_name']).loc['2023-7'].values).type(torch.float32)
y_eval = torch.from_numpy(data['售电量'].loc['2023-7'].values).type(torch.float32)
ds = TensorDataset(torch.from_numpy(x),torch.from_numpy(y))
dl = DataLoader(ds,batch_size=12,shuffle=True,drop_last=True)
# y归一化 防止梯度爆炸
y = (y - np.min(y))/(np.max(y) - np.min(y))
print(y)
# 设定神经网络的输入参数、隐藏层神经元、输出参数的个数
input_size = input_features.shape[1] # 设定输入特征个数
# np.shape[1]
# 0为行1为列默认为0
# 在此表格中因为每行为各样本的值每列为不同的特征分类所以此处0表示样本数1表示特征数
hidden_size = 64 # 设定隐藏层包含64个神经元
output_size = 1 # 设定输出特征个数为1
batch_size = 32 # 每一批迭代的特征数量
hidden_size = 64
output_size =1
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") # 选择使用GPU训练
@ -40,24 +44,21 @@ my_nn = torch.nn.Sequential(
torch.nn.ReLU().to(device),
torch.nn.Linear(hidden_size, hidden_size).to(device), # 第二层 → 第三层
torch.nn.ReLU().to(device),
torch.nn.Linear(hidden_size, hidden_size).to(device), # 第三层 → 第四层
torch.nn.ReLU().to(device),
torch.nn.Linear(hidden_size, output_size).to(device) # 第四层 → 输出层
torch.nn.Linear(hidden_size, output_size)
).to(device)
cost = torch.nn.MSELoss().to(device)
optimizer = torch.optim.Adam(my_nn.parameters(), lr=0.001)
optimizer = torch.optim.Adam(my_nn.parameters(), lr=0.0001)
# 训练网络
losses = []
for i in range(300):
for i in range(1000):
batch_loss = []
# 采用MINI-Batch的方法进行训练
for start in range(0, len(input_features), batch_size):
end = start + batch_size if start + batch_size < len(input_features) else len(input_features)
x_train = torch.tensor(input_features[start:end], dtype=torch.float32, requires_grad=True).to(device)
y_train = torch.tensor(y[start:end], dtype=torch.float32, requires_grad=True).to(device)
prediction = my_nn(x_train)
loss = cost(y_train, prediction)
for X,y in dl:
X,y = X.to(device).type(torch.float32),y.to(device).type(torch.float32)
prediction = my_nn(X)
loss = cost(y, prediction)
optimizer.zero_grad()
loss.backward(retain_graph=True)
optimizer.step()
@ -65,17 +66,16 @@ for i in range(300):
if i % 10 == 0:
losses.append(np.mean(batch_loss))
print(losses)
print(i, np.mean(batch_loss))
# 保存模型
# torch.save(my_nn, 'BP.pt')
# 绘制图像
dev_x = [i * 10 for i in range(20)]
plt.xlabel('step count')
plt.ylabel('loss')
plt.xlim((0, 200))
plt.ylim((0, 1000))
plt.plot(dev_x, losses)
plt.show()
# dev_x = [i * 10 for i in range(20)]
# plt.xlabel('step count')
# plt.ylabel('loss')
# plt.xlim((0, 200))
# plt.ylim((0, 1000))
# plt.plot(dev_x, losses)
# plt.show()

@ -17,7 +17,6 @@ def hf_season(x):
return list1
def season(x):
if str(x)[5:7] in ('06','07','08','12','01','02'):
return 1

@ -0,0 +1,7 @@
import numpy as np
n1 = np.array([[1,1,1]])
n2 = np.array([1,1,1]).reshape(1,-1)
print(n2)
n2 = np.array([]).reshape(3,-1)
print(np.max([[1,2,3],[4,5,6]]))

@ -1,176 +0,0 @@
import numpy as np
import pandas as pd
import torch
from torch import nn
from multiprocessing import Pool
import matplotlib.pyplot as plt
import os
os.environ["KMP_DUPLICATE_LIB_OK"]="TRUE"
DAYS_FOR_TRAIN = 10
torch.manual_seed(42)
class LSTM_Regression(nn.Module):
def __init__(self, input_size, hidden_size, output_size=1, num_layers=2):
super().__init__()
self.lstm = nn.LSTM(input_size, hidden_size, num_layers)
self.fc = nn.Linear(hidden_size, output_size)
def forward(self, _x):
x, _ = self.lstm(_x) # _x is input, size (seq_len, batch, input_size)
s, b, h = x.shape # x is output, size (seq_len, batch, hidden_size)
x = x.view(s * b, h)
x = self.fc(x)
x = x.view(s, b, -1) # 把形状改回来
return x
def create_dataset(data, days_for_train=5) -> (np.array, np.array):
dataset_x, dataset_y = [], []
for i in range(len(data) - days_for_train-3):
_x = data[i:(i + days_for_train)]
dataset_x.append(_x)
dataset_y.append(data[i + days_for_train:i + days_for_train+3])
return (np.array(dataset_x), np.array(dataset_y))
def normal(nd):
high = nd.describe()['75%'] + 1.5*(nd.describe()['75%']-nd.describe()['25%'])
low = nd.describe()['25%'] - 1.5*(nd.describe()['75%']-nd.describe()['25%'])
return nd[(nd<high)&(nd>low)]
# def get_data():
file_dir = r'C:\Users\鸽子\Desktop\浙江各地市分电压日电量数据'
dataset_x = []
for excel in os.listdir(file_dir):
data = pd.read_excel(os.path.join(file_dir,excel), sheet_name=0,index_col=' stat_date ')
data.columns = data.columns.map(lambda x: x.strip())
data.index = pd.to_datetime(data.index,format='%Y%m%d')
data.sort_index(inplace=True)
data = data.loc['2021-01':'2023-08']
data.drop(columns=[i for i in data.columns if (data[i] == 0).sum() / len(data) >= 0.5], inplace=True) # 去除0值列
print('len(data):', len(data))
list_app = []
for level in data.columns:
df = data[level]
df = df[df.values != 0] # 去除0值行
df = normal(df)
df = df.astype('float32').values # 转换数据类型
dataset_x create_dataset(df,DAYS_FOR_TRAIN)
def run(file_dir,excel):
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
data = pd.read_excel(os.path.join(file_dir,excel), sheet_name=0,index_col=' stat_date ')
data.columns = data.columns.map(lambda x: x.strip())
data.index = pd.to_datetime(data.index,format='%Y%m%d')
data.sort_index(inplace=True)
print(data.head())
data = data.loc['2021-01':'2023-09']
data.drop(columns=[i for i in data.columns if (data[i] == 0).sum() / len(data) >= 0.5], inplace=True) # 去除0值列
print('len(data):', len(data))
list_app = []
for level in data.columns:
df = data[level]
df = df[df.values != 0] # 去除0值行
df = normal(df)
df = df.astype('float32').values # 转换数据类型
# 标准化到0~1
max_value = np.max(df)
min_value = np.min(df)
df = (df - min_value) / (max_value - min_value)
dataset_x, dataset_y = create_dataset(df, DAYS_FOR_TRAIN)
print('len(dataset_x:)', len(dataset_x))
# 划分训练集和测试集
train_size = len(dataset_x) - 3
train_x = dataset_x[:train_size]
train_y = dataset_y[:train_size]
# 将数据改变形状RNN 读入的数据维度是 (seq_size, batch_size, feature_size)
train_x = train_x.reshape(-1, 1, DAYS_FOR_TRAIN)
train_y = train_y.reshape(-1, 1, 3)
# 转为pytorch的tensor对象
train_x = torch.from_numpy(train_x).to(device)
train_y = torch.from_numpy(train_y).to(device)
model = LSTM_Regression(DAYS_FOR_TRAIN, 32, output_size=3, num_layers=2).to(device) # 导入模型并设置模型的参数输入输出层、隐藏层等
train_loss = []
loss_function = nn.MSELoss()
optimizer = torch.optim.Adam(model.parameters(), lr=0.005, betas=(0.9, 0.999), eps=1e-08, weight_decay=0)
for i in range(1500):
out = model(train_x)
loss = loss_function(out, train_y)
loss.backward()
optimizer.step()
optimizer.zero_grad()
train_loss.append(loss.item())
# print(loss)
# 保存模型
# torch.save(model.state_dict(),save_filename)
# torch.save(model.state_dict(),os.path.join(model_save_dir,model_file))
# for test
model = model.eval() # 转换成测试模式
# model.load_state_dict(torch.load(os.path.join(model_save_dir,model_file))) # 读取参数
dataset_x = dataset_x.reshape(-1, 1, DAYS_FOR_TRAIN) # (seq_size, batch_size, feature_size)
dataset_x = torch.from_numpy(dataset_x).to(device)
pred_test = model(dataset_x) # 全量训练集
# 模型输出 (seq_size, batch_size, output_size)
pred_test = pred_test.view(-1)
pred_test = np.concatenate((np.zeros(DAYS_FOR_TRAIN), pred_test.cpu().detach().numpy()))
# plt.plot(pred_test, 'r', label='prediction')
# plt.plot(df, 'b', label='real')
# plt.plot((train_size, train_size), (0, 1), 'g--') # 分割线 左边是训练数据 右边是测试数据的输出
# plt.legend(loc='best')
# plt.show()
# 创建测试集
# result_list = []
# 以x为基础实际数据滚动预测未来3天
x = torch.from_numpy(df[-14:-4]).to(device)
pred = model(x.reshape(-1,1,DAYS_FOR_TRAIN)).view(-1).detach().numpy()
# 反归一化
pred = pred * (max_value - min_value) + min_value
df = df * (max_value - min_value) + min_value
print(pred)
# 打印指标
print(abs(pred - df[-3:]).mean() / df[-3:].mean())
result_eight = pd.DataFrame({'pred': np.round(pred,1),'real': df[-3:]})
target = (result_eight['pred'].sum() - result_eight['real'].sum()) / df[-31:].sum()
result_eight['loss_rate'] = round(target, 5)
result_eight['industry'] = industry
list_app.append(result_eight)
print(target)
print(result_eight)
final_df = pd.concat(list_app,ignore_index=True)
final_df.to_csv('市行业电量.csv',encoding='gbk')
print(final_df)
# result_eight.to_csv(f'./月底预测结果/9月{excel[:2]}.txt', sep='\t', mode='a')
# with open(fr'./偏差/9月底偏差率.txt', 'a', encoding='utf-8') as f:
# f.write(f'{excel[:2]}{industry}:{round(target, 5)}\n')
if __name__ == '__main__':
file_dir = r'C:\Users\鸽子\Desktop\浙江各地市分电压日电量数据'
run(file_dir,'杭州.xlsx')

@ -0,0 +1,172 @@
import numpy as np
import pandas as pd
import torch
from torch import nn
from multiprocessing import Pool
import matplotlib.pyplot as plt
import os
os.environ["KMP_DUPLICATE_LIB_OK"]="TRUE"
DAYS_FOR_TRAIN = 10
torch.manual_seed(42)
class LSTM_Regression(nn.Module):
def __init__(self, input_size, hidden_size, output_size=1, num_layers=2):
super().__init__()
self.lstm = nn.LSTM(input_size, hidden_size, num_layers)
self.fc = nn.Linear(hidden_size, output_size)
def forward(self, _x):
x, _ = self.lstm(_x) # _x is input, size (seq_len, batch, input_size)
s, b, h = x.shape # x is output, size (seq_len, batch, hidden_size)
x = x.view(s * b, h)
x = self.fc(x)
x = x.view(s, b, -1) # 把形状改回来
return x
def create_dataset(data, days_for_train=5) -> (np.array, np.array):
dataset_x, dataset_y = [], []
for i in range(len(data) - days_for_train-5):
dataset_x.append(data[i:(i + days_for_train)])
dataset_y.append(data[i + days_for_train:i + days_for_train+5])
# print(dataset_x,dataset_y)
return (np.array(dataset_x), np.array(dataset_y))
def normal(nd):
high = nd.describe()['75%'] + 1.5*(nd.describe()['75%']-nd.describe()['25%'])
low = nd.describe()['25%'] - 1.5*(nd.describe()['75%']-nd.describe()['25%'])
return nd[(nd<high)&(nd>low)]
def data_preprocessing(data):
data.columns = data.columns.map(lambda x: x.strip())
data.index = pd.to_datetime(data.index)
data.sort_index(inplace=True)
data = data.loc['2021-01':'2023-08']
data.drop(columns=[i for i in data.columns if (data[i] == 0).sum() / len(data) >= 0.5], inplace=True) # 去除0值列
data = data[data.values != 0]
data = data.astype(float)
for col in data.columns:
data[col] = normal(data[col])
return data
# 拼接数据集
file_dir = r'C:\Users\鸽子\Desktop\浙江各地市分电压日电量数据'
excel = os.listdir(file_dir)[0]
data = pd.read_excel(os.path.join(file_dir, excel), sheet_name=0, index_col=' stat_date ')
data = data_preprocessing(data)
df = data[data.columns[0]]
df.dropna(inplace = True)
dataset_x, dataset_y = create_dataset(df, DAYS_FOR_TRAIN)
for level in data.columns[1:]:
df = data[level]
df.dropna(inplace=True)
x, y = create_dataset(df, DAYS_FOR_TRAIN)
dataset_x = np.concatenate((dataset_x, x))
dataset_y = np.concatenate((dataset_y, y))
for excel in os.listdir(file_dir)[1:]:
data = pd.read_excel(os.path.join(file_dir,excel), sheet_name=0,index_col=' stat_date ')
data = data_preprocessing(data)
for level in data.columns:
df = data[level]
df.dropna(inplace=True)
x,y = create_dataset(df,DAYS_FOR_TRAIN)
dataset_x = np.concatenate((dataset_x,x))
dataset_y = np.concatenate((dataset_y,y))
print(dataset_x,dataset_y,dataset_x.shape,dataset_y.shape)
# 训练
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
# 标准化到0~1
max_value = np.max(dataset_x)
min_value = np.min(dataset_x)
dataset_x = (dataset_x - min_value) / (max_value - min_value)
dataset_y = (dataset_y - min_value) / (max_value - min_value)
# 划分训练集和测试集
train_size = len(dataset_x)*0.7
train_x = dataset_x[:train_size]
train_y = dataset_y[:train_size]
# 将数据改变形状RNN 读入的数据维度是 (seq_size, batch_size, feature_size)
train_x = train_x.reshape(-1, 1, DAYS_FOR_TRAIN)
train_y = train_y.reshape(-1, 1, 5)
# 转为pytorch的tensor对象
train_x = torch.from_numpy(train_x).to(device)
train_y = torch.from_numpy(train_y).to(device)
model = LSTM_Regression(DAYS_FOR_TRAIN, 32, output_size=3, num_layers=2).to(device) # 导入模型并设置模型的参数输入输出层、隐藏层等
train_loss = []
loss_function = nn.MSELoss()
optimizer = torch.optim.Adam(model.parameters(), lr=0.005, betas=(0.9, 0.999), eps=1e-08, weight_decay=0)
for i in range(1500):
out = model(train_x)
loss = loss_function(out, train_y)
loss.backward()
optimizer.step()
optimizer.zero_grad()
train_loss.append(loss.item())
# print(loss)
# 保存模型
torch.save(model.state_dict(),'dy5.pth')
# for test
model = model.eval() # 转换成测试模式
# model.load_state_dict(torch.load(os.path.join(model_save_dir,model_file))) # 读取参数
dataset_x = dataset_x.reshape(-1, 1, DAYS_FOR_TRAIN) # (seq_size, batch_size, feature_size)
dataset_x = torch.from_numpy(dataset_x).to(device)
pred_test = model(dataset_x) # 全量训练集
# 模型输出 (seq_size, batch_size, output_size)
pred_test = pred_test.view(-1)
pred_test = np.concatenate((np.zeros(DAYS_FOR_TRAIN), pred_test.cpu().detach().numpy()))
plt.plot(pred_test, 'r', label='prediction')
plt.plot(df, 'b', label='real')
plt.plot((train_size, train_size), (0, 1), 'g--') # 分割线 左边是训练数据 右边是测试数据的输出
plt.legend(loc='best')
plt.show()
# 创建测试集
# result_list = []
# 以x为基础实际数据滚动预测未来3天
# x = torch.from_numpy(df[-14:-4]).to(device)
# pred = model(x.reshape(-1,1,DAYS_FOR_TRAIN)).view(-1).detach().numpy()
# 反归一化
# pred = pred * (max_value - min_value) + min_value
# df = df * (max_value - min_value) + min_value
# print(pred)
# # 打印指标
# print(abs(pred - df[-3:]).mean() / df[-3:].mean())
# result_eight = pd.DataFrame({'pred': np.round(pred,1),'real': df[-3:]})
# target = (result_eight['pred'].sum() - result_eight['real'].sum()) / df[-31:].sum()
# result_eight['loss_rate'] = round(target, 5)
# result_eight['level'] = level
# list_app.append(result_eight)
# print(target)
# print(result_eight)
# final_df = pd.concat(list_app,ignore_index=True)
# final_df.to_csv('市行业电量.csv',encoding='gbk')
# print(final_df)
Loading…
Cancel
Save