From ddbf3e5d6124d598fff3c6eb4841468d50fb79d5 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?=E9=B8=BD=E5=AD=90?= <2316994765@qq.com> Date: Fri, 27 Oct 2023 15:11:16 +0800 Subject: [PATCH] =?UTF-8?q?=E7=94=B5=E5=8E=8B=E7=AD=89=E7=BA=A7=E8=BE=93?= =?UTF-8?q?=E5=87=BA=E4=B8=BA5lstm?= MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit --- .idea/misc.xml | 2 +- .idea/pytorch2.iml | 2 +- bp神经网络.py | 72 +++---- 入模数据/1.py | 1 - 浙江电压等级电量/test1.py | 7 + .../电压等级_输出为3.py | 176 ------------------ .../电压等级_输出为5.py | 172 +++++++++++++++++ 7 files changed, 217 insertions(+), 215 deletions(-) create mode 100644 浙江电压等级电量/test1.py delete mode 100644 浙江电压等级电量/电压等级_输出为3.py create mode 100644 浙江电压等级电量/电压等级_输出为5.py diff --git a/.idea/misc.xml b/.idea/misc.xml index 695b918..3141537 100644 --- a/.idea/misc.xml +++ b/.idea/misc.xml @@ -1,4 +1,4 @@ - + \ No newline at end of file diff --git a/.idea/pytorch2.iml b/.idea/pytorch2.iml index 5cfdc49..719cec4 100644 --- a/.idea/pytorch2.iml +++ b/.idea/pytorch2.iml @@ -2,7 +2,7 @@ - + \ No newline at end of file diff --git a/bp神经网络.py b/bp神经网络.py index 4dd32e5..dd3197f 100644 --- a/bp神经网络.py +++ b/bp神经网络.py @@ -3,33 +3,37 @@ import pandas as pd import matplotlib.pyplot as plt import torch from sklearn import preprocessing +from torch.utils.data import DataLoader,TensorDataset -data = pd.read_excel(r'C:\Users\user\PycharmProjects\pytorch2\入模数据\杭州数据.xlsx',index_col='dtdate') + + +data = pd.read_excel(r'C:\python-project\pytorch3\入模数据\杭州数据.xlsx',index_col='dtdate') print(data.columns) -y = np.array(data['售电量']) # 制作标签,用于比对训练结果 -x = data.drop(columns=['售电量','city_name']) # 在特征数据集中去掉label -# df.drop(label, axis=0) -# label:要删除的列或者行,如果要删除多个,传入列表 -# axis:轴的方向,0为行,1为列,默认为0 -fea_train = np.array(x) # 转换为ndarray格式 +x = np.array(data.drop(columns=['售电量','city_name']).loc['2021-1':'2023-6']) +y = np.array(data['售电量'].loc['2021-1':'2023-6']) # 数据标准化操作:(x-均值μ) / 标准差σ ,使数据关于原点对称,提升训练效率 -input_features = preprocessing.StandardScaler().fit_transform(fea_train) # fit:求出均值和标准差 transform:求解 +input_features = preprocessing.StandardScaler().fit_transform(np.array(x)) # fit:求出均值和标准差 transform:求解 + +# y归一化 +min = np.min(y) +max = np.max(y) +y = (y - min)/(max - min) + +x_eval = torch.from_numpy(data.drop(columns=['售电量','city_name']).loc['2023-7'].values).type(torch.float32) +y_eval = torch.from_numpy(data['售电量'].loc['2023-7'].values).type(torch.float32) + +ds = TensorDataset(torch.from_numpy(x),torch.from_numpy(y)) +dl = DataLoader(ds,batch_size=12,shuffle=True,drop_last=True) -# y归一化 防止梯度爆炸 -y = (y - np.min(y))/(np.max(y) - np.min(y)) -print(y) # 设定神经网络的输入参数、隐藏层神经元、输出参数的个数 input_size = input_features.shape[1] # 设定输入特征个数 -# np.shape[1] -# 0为行,1为列,默认为0 -# 在此表格中因为每行为各样本的值,每列为不同的特征分类,所以此处0表示样本数,1表示特征数 -hidden_size = 64 # 设定隐藏层包含64个神经元 -output_size = 1 # 设定输出特征个数为1 -batch_size = 32 # 每一批迭代的特征数量 + +hidden_size = 64 +output_size =1 device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") # 选择使用GPU训练 @@ -40,24 +44,21 @@ my_nn = torch.nn.Sequential( torch.nn.ReLU().to(device), torch.nn.Linear(hidden_size, hidden_size).to(device), # 第二层 → 第三层 torch.nn.ReLU().to(device), - torch.nn.Linear(hidden_size, hidden_size).to(device), # 第三层 → 第四层 - torch.nn.ReLU().to(device), - torch.nn.Linear(hidden_size, output_size).to(device) # 第四层 → 输出层 + torch.nn.Linear(hidden_size, output_size) ).to(device) cost = torch.nn.MSELoss().to(device) -optimizer = torch.optim.Adam(my_nn.parameters(), lr=0.001) +optimizer = torch.optim.Adam(my_nn.parameters(), lr=0.0001) # 训练网络 losses = [] -for i in range(300): +for i in range(1000): batch_loss = [] # 采用MINI-Batch的方法进行训练 - for start in range(0, len(input_features), batch_size): - end = start + batch_size if start + batch_size < len(input_features) else len(input_features) - x_train = torch.tensor(input_features[start:end], dtype=torch.float32, requires_grad=True).to(device) - y_train = torch.tensor(y[start:end], dtype=torch.float32, requires_grad=True).to(device) - prediction = my_nn(x_train) - loss = cost(y_train, prediction) + for X,y in dl: + X,y = X.to(device).type(torch.float32),y.to(device).type(torch.float32) + + prediction = my_nn(X) + loss = cost(y, prediction) optimizer.zero_grad() loss.backward(retain_graph=True) optimizer.step() @@ -65,17 +66,16 @@ for i in range(300): if i % 10 == 0: losses.append(np.mean(batch_loss)) - print(losses) print(i, np.mean(batch_loss)) # 保存模型 # torch.save(my_nn, 'BP.pt') # 绘制图像 -dev_x = [i * 10 for i in range(20)] -plt.xlabel('step count') -plt.ylabel('loss') -plt.xlim((0, 200)) -plt.ylim((0, 1000)) -plt.plot(dev_x, losses) -plt.show() +# dev_x = [i * 10 for i in range(20)] +# plt.xlabel('step count') +# plt.ylabel('loss') +# plt.xlim((0, 200)) +# plt.ylim((0, 1000)) +# plt.plot(dev_x, losses) +# plt.show() diff --git a/入模数据/1.py b/入模数据/1.py index ee25aa9..f382c45 100644 --- a/入模数据/1.py +++ b/入模数据/1.py @@ -17,7 +17,6 @@ def hf_season(x): return list1 - def season(x): if str(x)[5:7] in ('06','07','08','12','01','02'): return 1 diff --git a/浙江电压等级电量/test1.py b/浙江电压等级电量/test1.py new file mode 100644 index 0000000..6d9eca7 --- /dev/null +++ b/浙江电压等级电量/test1.py @@ -0,0 +1,7 @@ +import numpy as np +n1 = np.array([[1,1,1]]) +n2 = np.array([1,1,1]).reshape(1,-1) +print(n2) +n2 = np.array([]).reshape(3,-1) + +print(np.max([[1,2,3],[4,5,6]])) \ No newline at end of file diff --git a/浙江电压等级电量/电压等级_输出为3.py b/浙江电压等级电量/电压等级_输出为3.py deleted file mode 100644 index 06d144c..0000000 --- a/浙江电压等级电量/电压等级_输出为3.py +++ /dev/null @@ -1,176 +0,0 @@ -import numpy as np -import pandas as pd -import torch -from torch import nn -from multiprocessing import Pool -import matplotlib.pyplot as plt -import os -os.environ["KMP_DUPLICATE_LIB_OK"]="TRUE" -DAYS_FOR_TRAIN = 10 -torch.manual_seed(42) -class LSTM_Regression(nn.Module): - - def __init__(self, input_size, hidden_size, output_size=1, num_layers=2): - super().__init__() - - self.lstm = nn.LSTM(input_size, hidden_size, num_layers) - self.fc = nn.Linear(hidden_size, output_size) - - def forward(self, _x): - x, _ = self.lstm(_x) # _x is input, size (seq_len, batch, input_size) - s, b, h = x.shape # x is output, size (seq_len, batch, hidden_size) - x = x.view(s * b, h) - x = self.fc(x) - x = x.view(s, b, -1) # 把形状改回来 - return x - - -def create_dataset(data, days_for_train=5) -> (np.array, np.array): - dataset_x, dataset_y = [], [] - for i in range(len(data) - days_for_train-3): - _x = data[i:(i + days_for_train)] - dataset_x.append(_x) - dataset_y.append(data[i + days_for_train:i + days_for_train+3]) - return (np.array(dataset_x), np.array(dataset_y)) - -def normal(nd): - high = nd.describe()['75%'] + 1.5*(nd.describe()['75%']-nd.describe()['25%']) - low = nd.describe()['25%'] - 1.5*(nd.describe()['75%']-nd.describe()['25%']) - return nd[(ndlow)] - - - -# def get_data(): -file_dir = r'C:\Users\鸽子\Desktop\浙江各地市分电压日电量数据' -dataset_x = [] -for excel in os.listdir(file_dir): - data = pd.read_excel(os.path.join(file_dir,excel), sheet_name=0,index_col=' stat_date ') - data.columns = data.columns.map(lambda x: x.strip()) - - data.index = pd.to_datetime(data.index,format='%Y%m%d') - data.sort_index(inplace=True) - - data = data.loc['2021-01':'2023-08'] - data.drop(columns=[i for i in data.columns if (data[i] == 0).sum() / len(data) >= 0.5], inplace=True) # 去除0值列 - print('len(data):', len(data)) - list_app = [] - for level in data.columns: - df = data[level] - df = df[df.values != 0] # 去除0值行 - df = normal(df) - df = df.astype('float32').values # 转换数据类型 - dataset_x create_dataset(df,DAYS_FOR_TRAIN) - - -def run(file_dir,excel): - device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') - - data = pd.read_excel(os.path.join(file_dir,excel), sheet_name=0,index_col=' stat_date ') - - data.columns = data.columns.map(lambda x: x.strip()) - - data.index = pd.to_datetime(data.index,format='%Y%m%d') - data.sort_index(inplace=True) - print(data.head()) - data = data.loc['2021-01':'2023-09'] - - data.drop(columns=[i for i in data.columns if (data[i] == 0).sum() / len(data) >= 0.5], inplace=True) # 去除0值列 - print('len(data):', len(data)) - list_app = [] - for level in data.columns: - df = data[level] - df = df[df.values != 0] # 去除0值行 - df = normal(df) - df = df.astype('float32').values # 转换数据类型 - - - # 标准化到0~1 - max_value = np.max(df) - min_value = np.min(df) - df = (df - min_value) / (max_value - min_value) - - dataset_x, dataset_y = create_dataset(df, DAYS_FOR_TRAIN) - print('len(dataset_x:)', len(dataset_x)) - - # 划分训练集和测试集 - train_size = len(dataset_x) - 3 - train_x = dataset_x[:train_size] - train_y = dataset_y[:train_size] - - # 将数据改变形状,RNN 读入的数据维度是 (seq_size, batch_size, feature_size) - train_x = train_x.reshape(-1, 1, DAYS_FOR_TRAIN) - train_y = train_y.reshape(-1, 1, 3) - - # 转为pytorch的tensor对象 - train_x = torch.from_numpy(train_x).to(device) - train_y = torch.from_numpy(train_y).to(device) - - model = LSTM_Regression(DAYS_FOR_TRAIN, 32, output_size=3, num_layers=2).to(device) # 导入模型并设置模型的参数输入输出层、隐藏层等 - - - train_loss = [] - loss_function = nn.MSELoss() - optimizer = torch.optim.Adam(model.parameters(), lr=0.005, betas=(0.9, 0.999), eps=1e-08, weight_decay=0) - for i in range(1500): - out = model(train_x) - loss = loss_function(out, train_y) - loss.backward() - optimizer.step() - optimizer.zero_grad() - train_loss.append(loss.item()) - # print(loss) - # 保存模型 - # torch.save(model.state_dict(),save_filename) - # torch.save(model.state_dict(),os.path.join(model_save_dir,model_file)) - - # for test - model = model.eval() # 转换成测试模式 - # model.load_state_dict(torch.load(os.path.join(model_save_dir,model_file))) # 读取参数 - dataset_x = dataset_x.reshape(-1, 1, DAYS_FOR_TRAIN) # (seq_size, batch_size, feature_size) - dataset_x = torch.from_numpy(dataset_x).to(device) - - pred_test = model(dataset_x) # 全量训练集 - # 模型输出 (seq_size, batch_size, output_size) - pred_test = pred_test.view(-1) - pred_test = np.concatenate((np.zeros(DAYS_FOR_TRAIN), pred_test.cpu().detach().numpy())) - - # plt.plot(pred_test, 'r', label='prediction') - # plt.plot(df, 'b', label='real') - # plt.plot((train_size, train_size), (0, 1), 'g--') # 分割线 左边是训练数据 右边是测试数据的输出 - # plt.legend(loc='best') - # plt.show() - - - # 创建测试集 - # result_list = [] - # 以x为基础实际数据,滚动预测未来3天 - x = torch.from_numpy(df[-14:-4]).to(device) - pred = model(x.reshape(-1,1,DAYS_FOR_TRAIN)).view(-1).detach().numpy() - - - # 反归一化 - pred = pred * (max_value - min_value) + min_value - df = df * (max_value - min_value) + min_value - - print(pred) - # 打印指标 - print(abs(pred - df[-3:]).mean() / df[-3:].mean()) - result_eight = pd.DataFrame({'pred': np.round(pred,1),'real': df[-3:]}) - target = (result_eight['pred'].sum() - result_eight['real'].sum()) / df[-31:].sum() - result_eight['loss_rate'] = round(target, 5) - result_eight['industry'] = industry - list_app.append(result_eight) - print(target) - print(result_eight) - final_df = pd.concat(list_app,ignore_index=True) - final_df.to_csv('市行业电量.csv',encoding='gbk') - print(final_df) - - # result_eight.to_csv(f'./月底预测结果/9月{excel[:2]}.txt', sep='\t', mode='a') - # with open(fr'./偏差/9月底偏差率.txt', 'a', encoding='utf-8') as f: - # f.write(f'{excel[:2]}{industry}:{round(target, 5)}\n') - -if __name__ == '__main__': - file_dir = r'C:\Users\鸽子\Desktop\浙江各地市分电压日电量数据' - - run(file_dir,'杭州.xlsx') diff --git a/浙江电压等级电量/电压等级_输出为5.py b/浙江电压等级电量/电压等级_输出为5.py new file mode 100644 index 0000000..9767442 --- /dev/null +++ b/浙江电压等级电量/电压等级_输出为5.py @@ -0,0 +1,172 @@ +import numpy as np +import pandas as pd +import torch +from torch import nn +from multiprocessing import Pool +import matplotlib.pyplot as plt +import os +os.environ["KMP_DUPLICATE_LIB_OK"]="TRUE" +DAYS_FOR_TRAIN = 10 +torch.manual_seed(42) +class LSTM_Regression(nn.Module): + + def __init__(self, input_size, hidden_size, output_size=1, num_layers=2): + super().__init__() + + self.lstm = nn.LSTM(input_size, hidden_size, num_layers) + self.fc = nn.Linear(hidden_size, output_size) + + def forward(self, _x): + x, _ = self.lstm(_x) # _x is input, size (seq_len, batch, input_size) + s, b, h = x.shape # x is output, size (seq_len, batch, hidden_size) + x = x.view(s * b, h) + x = self.fc(x) + x = x.view(s, b, -1) # 把形状改回来 + return x + + +def create_dataset(data, days_for_train=5) -> (np.array, np.array): + dataset_x, dataset_y = [], [] + for i in range(len(data) - days_for_train-5): + dataset_x.append(data[i:(i + days_for_train)]) + dataset_y.append(data[i + days_for_train:i + days_for_train+5]) + # print(dataset_x,dataset_y) + return (np.array(dataset_x), np.array(dataset_y)) + +def normal(nd): + high = nd.describe()['75%'] + 1.5*(nd.describe()['75%']-nd.describe()['25%']) + low = nd.describe()['25%'] - 1.5*(nd.describe()['75%']-nd.describe()['25%']) + return nd[(ndlow)] + +def data_preprocessing(data): + data.columns = data.columns.map(lambda x: x.strip()) + data.index = pd.to_datetime(data.index) + data.sort_index(inplace=True) + data = data.loc['2021-01':'2023-08'] + data.drop(columns=[i for i in data.columns if (data[i] == 0).sum() / len(data) >= 0.5], inplace=True) # 去除0值列 + data = data[data.values != 0] + data = data.astype(float) + for col in data.columns: + data[col] = normal(data[col]) + + return data + + +# 拼接数据集 +file_dir = r'C:\Users\鸽子\Desktop\浙江各地市分电压日电量数据' +excel = os.listdir(file_dir)[0] + +data = pd.read_excel(os.path.join(file_dir, excel), sheet_name=0, index_col=' stat_date ') + +data = data_preprocessing(data) + +df = data[data.columns[0]] +df.dropna(inplace = True) +dataset_x, dataset_y = create_dataset(df, DAYS_FOR_TRAIN) + +for level in data.columns[1:]: + df = data[level] + df.dropna(inplace=True) + x, y = create_dataset(df, DAYS_FOR_TRAIN) + dataset_x = np.concatenate((dataset_x, x)) + dataset_y = np.concatenate((dataset_y, y)) + + +for excel in os.listdir(file_dir)[1:]: + data = pd.read_excel(os.path.join(file_dir,excel), sheet_name=0,index_col=' stat_date ') + data = data_preprocessing(data) + + for level in data.columns: + df = data[level] + df.dropna(inplace=True) + x,y = create_dataset(df,DAYS_FOR_TRAIN) + dataset_x = np.concatenate((dataset_x,x)) + dataset_y = np.concatenate((dataset_y,y)) + +print(dataset_x,dataset_y,dataset_x.shape,dataset_y.shape) + +# 训练 +device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') + +# 标准化到0~1 +max_value = np.max(dataset_x) +min_value = np.min(dataset_x) +dataset_x = (dataset_x - min_value) / (max_value - min_value) +dataset_y = (dataset_y - min_value) / (max_value - min_value) + +# 划分训练集和测试集 +train_size = len(dataset_x)*0.7 +train_x = dataset_x[:train_size] +train_y = dataset_y[:train_size] + +# 将数据改变形状,RNN 读入的数据维度是 (seq_size, batch_size, feature_size) +train_x = train_x.reshape(-1, 1, DAYS_FOR_TRAIN) +train_y = train_y.reshape(-1, 1, 5) + +# 转为pytorch的tensor对象 +train_x = torch.from_numpy(train_x).to(device) +train_y = torch.from_numpy(train_y).to(device) + +model = LSTM_Regression(DAYS_FOR_TRAIN, 32, output_size=3, num_layers=2).to(device) # 导入模型并设置模型的参数输入输出层、隐藏层等 + + +train_loss = [] +loss_function = nn.MSELoss() +optimizer = torch.optim.Adam(model.parameters(), lr=0.005, betas=(0.9, 0.999), eps=1e-08, weight_decay=0) +for i in range(1500): + out = model(train_x) + loss = loss_function(out, train_y) + loss.backward() + optimizer.step() + optimizer.zero_grad() + train_loss.append(loss.item()) + # print(loss) +# 保存模型 +torch.save(model.state_dict(),'dy5.pth') + + +# for test +model = model.eval() # 转换成测试模式 +# model.load_state_dict(torch.load(os.path.join(model_save_dir,model_file))) # 读取参数 +dataset_x = dataset_x.reshape(-1, 1, DAYS_FOR_TRAIN) # (seq_size, batch_size, feature_size) +dataset_x = torch.from_numpy(dataset_x).to(device) + +pred_test = model(dataset_x) # 全量训练集 +# 模型输出 (seq_size, batch_size, output_size) +pred_test = pred_test.view(-1) +pred_test = np.concatenate((np.zeros(DAYS_FOR_TRAIN), pred_test.cpu().detach().numpy())) + +plt.plot(pred_test, 'r', label='prediction') +plt.plot(df, 'b', label='real') +plt.plot((train_size, train_size), (0, 1), 'g--') # 分割线 左边是训练数据 右边是测试数据的输出 +plt.legend(loc='best') +plt.show() + + +# 创建测试集 +# result_list = [] +# 以x为基础实际数据,滚动预测未来3天 +# x = torch.from_numpy(df[-14:-4]).to(device) +# pred = model(x.reshape(-1,1,DAYS_FOR_TRAIN)).view(-1).detach().numpy() + + +# 反归一化 +# pred = pred * (max_value - min_value) + min_value +# df = df * (max_value - min_value) + min_value + +# print(pred) +# # 打印指标 +# print(abs(pred - df[-3:]).mean() / df[-3:].mean()) +# result_eight = pd.DataFrame({'pred': np.round(pred,1),'real': df[-3:]}) +# target = (result_eight['pred'].sum() - result_eight['real'].sum()) / df[-31:].sum() +# result_eight['loss_rate'] = round(target, 5) +# result_eight['level'] = level +# list_app.append(result_eight) +# print(target) +# print(result_eight) +# final_df = pd.concat(list_app,ignore_index=True) +# final_df.to_csv('市行业电量.csv',encoding='gbk') +# print(final_df) + + +