补充9月数据

main
鸽子 11 months ago
parent d0b1a172ac
commit cbe2d0a68a

@ -0,0 +1,121 @@
import xgboost as xgb
import pandas as pd
import os
from sklearn.metrics import r2_score
from sklearn.model_selection import train_test_split
import matplotlib as mpl
import matplotlib.pyplot as plt
mpl.rcParams['font.sans-serif']=['kaiti']
pd.set_option('display.width',None)
def hf_season(x):
list1= []
for i in range(1,13):
if x.loc[f'2021-{i}'].mean() >= x.describe()['75%']:
list1.append(i)
return list1
def season(x):
if str(x)[5:7] in ('06','07','08','12','01','02'):
return 1
else:
return 0
def month(x):
if str(x)[5:7] in ('08','09','10','12','01','02'):
return 1
else:
return 0
def normal(nd):
high = nd.describe()['75%'] + 1.5*(nd.describe()['75%']-nd.describe()['25%'])
low = nd.describe()['25%'] - 1.5*(nd.describe()['75%']-nd.describe()['25%'])
return nd[(nd<high)&(nd>low)]
data = pd.read_excel(r'C:\python-project\pytorch3\入模数据\杭州数据.xlsx',index_col='dtdate')
data.index = pd.to_datetime(data.index,format='%Y-%m-%d')
data = data.loc[normal(data['售电量']).index]
# for i in range(1,13):
# plt.plot(range(len(data['售电量'][f'2022-{i}'])),data['售电量'][f'2022-{i}'])
# plt.show()
print(data['售电量']['2022-9'])
plt.plot(range(len(data['售电量']['2022-7'])),data['售电量']['2022-7'])
plt.plot(range(len(data['售电量']['2022-7']),len(data['售电量']['2022-7'])+len(data['售电量']['2023-7'])),data['售电量']['2023-7'])
# plt.plot(range(len(data['售电量'][['2022-9','2023-9']])),data['售电量'][['2022-9','2023-9']])
plt.show()
# print(hf_season(data.loc['2021']['售电量']))
data['month'] = data.index.strftime('%Y-%m-%d').str[6]
data['month'] = data['month'].astype('int')
data['season'] = data.index.map(season)
print(data.head(50))
df_eval = data.loc['2023-7']
df_train = data.loc['2021-1':'2023-6']
# df_train = df[500:850]
print(len(df_eval),len(df_train),len(data))
print(data.drop(columns='city_name').corr(method='pearson')['售电量'])
df_train = df_train[['tem_max','tem_min','24ST','rh','rh_max','prs','prs_max','prs_min','售电量','month','holiday','season']]
# IQR = df['售电量'].describe()['75%'] - df['售电量'].describe()['25%']
# high = df['售电量'].describe()['75%'] + 1.5*IQR
# low = df['售电量'].describe()['25%'] - 1.5*IQR
# print('异常值数量:',len(df[(df['售电量'] >= high) | (df['售电量'] <= low)]))
#
# df_train = df_train[(df['售电量'] <= high) & (df['售电量'] >= low)]
X = df_train[['tem_max','tem_min','24ST','holiday','season']]
X_eval = df_eval[['tem_max','tem_min','24ST','holiday','season']]
y = df_train['售电量']
print(y.describe())
# best_goal = 1
# best_i = {}
# for i in range(400):
x_train,x_test,y_train,y_test = train_test_split(X,y,test_size=0.15,random_state=42)
model = xgb.XGBRegressor(max_depth=6, learning_rate=0.05, n_estimators=150)
model.fit(x_train,y_train)
y_pred = model.predict(x_test)
result_test = pd.DataFrame({'test':y_test,'pred':y_pred},index=y_test.index)
# 指标打印
print(abs(y_test - y_pred).mean() / y_test.mean())
eval_pred = model.predict(X_eval)
result_eval = pd.DataFrame({'eval':df_eval['售电量'],'pred':eval_pred},index=df_eval['售电量'].index)
print((result_eval['eval'].sum()-result_eval['pred'].sum())/result_eval['eval'].sum())
goal = (result_eval['eval'][-3:].sum()-result_eval['pred'][-3:].sum())/result_eval['eval'].sum()
print('goal:',goal)
goal2 = (result_eval['eval'][-23:].sum()-result_eval['pred'][-23:].sum())/result_eval['eval'].sum()
print('goal2:',goal2)
print(result_eval)
print('r2:',r2_score(y_test,y_pred))
# if abs(goal) < best_goal:
# best_goal = abs(goal)
# best_i['best_i'] = i
# x = goal2
# print(best_i,best_goal,x)
# result_eval.to_csv(r'C:\Users\user\Desktop\9月各地市日电量预测结果\杭州.csv')
# with open(r'C:\Users\user\Desktop\9月各地市日电量预测结果\偏差率.txt','a',encoding='utf-8') as f:
# f.write(f'杭州月末3天偏差率{round(goal,5)},9号-月底偏差率:{round(goal2,5)}\n')
# # 保存模型
# model.save_model('hangzhou.bin')
# loaded_model = xgb.XGBRegressor()
# loaded_model.load_model('hangzhou.bin')
# model.predict(X_eval)

Binary file not shown.

@ -0,0 +1,177 @@
import xgboost as xgb
import pandas as pd
import os
from sklearn.metrics import r2_score
from sklearn.model_selection import train_test_split
import matplotlib as mpl
import matplotlib.pyplot as plt
import datetime
import math
from sklearn.preprocessing import LabelEncoder
mpl.rcParams['font.sans-serif']=['kaiti']
pd.set_option('display.width',None)
def season(x):
if str(x)[5:7] in ['07', '08']:
return 2
elif str(x)[5:7] in ['01', '02', '03', '06', '09', '11', '12']:
return 1
elif str(x)[5:7] in['04', '05', '10']:
return 0
def normal(nd):
high = nd.describe()['75%'] + 1.5*(nd.describe()['75%']-nd.describe()['25%'])
low = nd.describe()['25%'] - 1.5*(nd.describe()['75%']-nd.describe()['25%'])
return nd[(nd<high)&(nd>low)].index
# df = pd.read_excel(r'C:\Users\鸽子\Desktop\杭州19年至今日电量及气象数据.xlsx',sheet_name=0)
# df_elec = pd.read_excel(r'C:\Users\鸽子\Desktop\杭州19年至今日电量及气象数据.xlsx',sheet_name=1)
# df_elec.columns = df_elec.columns.map(lambda x:x.strip())
# df_elec['售电量'] = df_elec['售电量']/10000
# df.columns = df.columns.map(lambda x:x.strip())
# df = df[['dtdate','tem_max','tem_min']]
# # print(df.head())
# # print(df_elec.head())
#
# merge_df = pd.merge(df_elec,df,left_on='pt_date',right_on='dtdate')[['pt_date','tem_max','tem_min','售电量']]
# merge_df.set_index('pt_date',inplace=True)
# merge_df.index = pd.to_datetime(merge_df.index,format='%Y%m%d')
#
#
# merge_df['month'] = merge_df.index.strftime('%Y-%m-%d').str[5:7]
# merge_df['month'] = merge_df['month'].astype('int')
# merge_df.to_csv('杭州入模数据.csv',encoding='gbk')
data = pd.read_csv(r'杭州入模数据.csv',encoding='gbk')
data.drop_duplicates(subset='pt_date',inplace=True)
data.set_index('pt_date',inplace=True)
data.index = pd.to_datetime(data.index)
print(data.loc['2023-07'])
def jq(y,x):
a=365.242 * (y - 1900) + 6.2 + 15.22 * x - 1.9 * math.sin(0.262 * x)
return datetime.date(1899,12,31)+datetime.timedelta(days=int(a))
# print(jq(2020,0))
jq_list=['小寒', '大寒', '立春', '雨水', '惊蛰', '春分', '清明', '谷雨', '立夏', '小满', '芒种', '夏至', '小暑', '大暑', '立秋', '处暑', '白露', '秋分', '寒露', '霜降', '立冬', '小雪', '大雪','冬至']
jq_dict={}
for j in range(2019,2024):
for i in range(24):
jq_dict[jq(j,i).strftime('%Y-%m-%d')]=jq_list[i]
# print(jq_dict)
data['24ST']=data.index
data['24ST']=data['24ST'].astype('string').map(jq_dict)
data['24ST'].fillna(method='ffill',inplace=True)
data['24ST'].fillna('冬至',inplace=True)
# data为数据集 product_tags为需要编码的特征列(假设为第一列)
le = LabelEncoder()
data['24ST'] = le.fit_transform(data['24ST'])
data = data.loc[normal(data['售电量'])]
data['season'] = data.index.map(season)
print(data['售电量'].describe())
print(data)
# list2 = []
# list0 = []
# list1 = []
# for i in ('01','02','03','04','05','06','07','08','09','10','11','12'):
# month_index = df.index.strftime('%Y-%m-%d').str[5:7] == f'{i}'
# if df.loc[month_index]['售电量'].mean() >= df['售电量'].describe()['75%']:
# list2.append(i)
# elif df.loc[month_index]['售电量'].mean() <= df['售电量'].describe()['25%']:
# list0.append(i)
# else:
# list1.append(i)
# print(list0,list1,list2)
# data = pd.read_excel(r'C:\python-project\pytorch3\入模数据\杭州数据.xlsx',index_col='dtdate')
# data.index = pd.to_datetime(data.index,format='%Y-%m-%d')
# data = data.loc[normal(data['售电量']).index]
# plt.plot(range(len(data['售电量']['2021':'2022'])),data['售电量']['2021':'2022'])
# plt.show()
# # print(hf_season(data.loc['2021']['售电量']))
# data['month'] = data.index.strftime('%Y-%m-%d').str[6]
# data['month'] = data['month'].astype('int')
# data['season'] = data.index.map(season)
# print(data.head(50))
#
df_eval = data.loc['2023-9']
df_train = data.loc['2019-1':'2023-8']
print(len(df_train),len(df_eval))
plt.plot(range(len(data.loc['2019-1':'2023-9'])),data.loc['2019-1':'2023-9'])
plt.show()
# df_train = df[500:850]
print(len(df_eval),len(df_train),len(data))
print(data.corr(method='pearson')['售电量'])
df_train = df_train[['tem_max','tem_min','24ST','售电量','season']]
# IQR = df['售电量'].describe()['75%'] - df['售电量'].describe()['25%']
# high = df['售电量'].describe()['75%'] + 1.5*IQR
# low = df['售电量'].describe()['25%'] - 1.5*IQR
# print('异常值数量:',len(df[(df['售电量'] >= high) | (df['售电量'] <= low)]))
#
# df_train = df_train[(df['售电量'] <= high) & (df['售电量'] >= low)]
X = df_train[['tem_max','tem_min','season','24ST']]
X_eval = df_eval[['tem_max','tem_min','season','24ST']]
y = df_train['售电量']
print(y.describe())
# best_goal = 1
# best_i = {}
# for i in range(400):
x_train,x_test,y_train,y_test = train_test_split(X,y,test_size=0.2,random_state=42)
model = xgb.XGBRegressor(max_depth=6, learning_rate=0.05, n_estimators=150)
model.fit(x_train,y_train)
y_pred = model.predict(x_test)
result_test = pd.DataFrame({'test':y_test,'pred':y_pred},index=y_test.index)
# 指标打印
print(abs(y_test - y_pred).mean() / y_test.mean())
eval_pred = model.predict(X_eval)
result_eval = pd.DataFrame({'eval':df_eval['售电量'],'pred':eval_pred},index=df_eval['售电量'].index)
print((result_eval['eval'].sum()-result_eval['pred'].sum())/result_eval['eval'].sum())
goal = (result_eval['eval'][-3:].sum()-result_eval['pred'][-3:].sum())/result_eval['eval'].sum()
print('goal:',goal)
goal2 = (result_eval['eval'][-23:].sum()-result_eval['pred'][-23:].sum())/result_eval['eval'].sum()
print('goal2:',goal2)
print(result_eval)
print('r2:',r2_score(y_test,y_pred))
# if abs(goal) < best_goal:
# best_goal = abs(goal)
# best_i['best_i'] = i
# x = goal2
# print(best_i,best_goal,x)
# result_eval.to_csv(r'C:\Users\user\Desktop\9月各地市日电量预测结果\杭州.csv')
# with open(r'C:\Users\user\Desktop\9月各地市日电量预测结果\偏差率.txt','a',encoding='utf-8') as f:
# f.write(f'杭州月末3天偏差率{round(goal,5)},9号-月底偏差率:{round(goal2,5)}\n')
# # 保存模型
# model.save_model('hangzhou.bin')
# loaded_model = xgb.XGBRegressor()
# loaded_model.load_model('hangzhou.bin')
# model.predict(X_eval)

@ -37,7 +37,7 @@ def normal(nd):
data = pd.read_excel(r'C:\python-project\pytorch3\入模数据\杭州数据.xlsx',index_col='dtdate')
data.index = pd.to_datetime(data.index,format='%Y-%m-%d')
data = data.loc[normal(data['售电量']).index]
plt.plot(range(len(data)),data['售电量'])
plt.plot(range(len(data['售电量']['2021':'2022'])),data['售电量']['2021':'2022'])
plt.show()
# print(hf_season(data.loc['2021']['售电量']))
@ -47,12 +47,12 @@ data['month'] = data['month'].astype('int')
data['season'] = data.index.map(season)
print(data.head(50))
df_eval = data.loc['2023-9']
df_train = data.loc['2021-1':'2023-8']
df_eval = data.loc['2023-7']
df_train = data.loc['2021-1':'2023-6']
# df_train = df[500:850]
print(len(df_eval),len(df_train),len(data))
print(data.drop(columns='city_name').corr(method='pearson')['season'])
print(data.drop(columns='city_name').corr(method='pearson')['售电量'])
df_train = df_train[['tem_max','tem_min','24ST','rh','rh_max','prs','prs_max','prs_min','售电量','month','holiday','season']]
@ -73,7 +73,7 @@ print(y.describe())
# best_i = {}
# for i in range(400):
x_train,x_test,y_train,y_test = train_test_split(X,y,test_size=0.15,random_state=209)
x_train,x_test,y_train,y_test = train_test_split(X,y,test_size=0.15,random_state=42)
model = xgb.XGBRegressor(max_depth=6, learning_rate=0.05, n_estimators=150)
model.fit(x_train,y_train)
@ -85,14 +85,16 @@ print(abs(y_test - y_pred).mean() / y_test.mean())
eval_pred = model.predict(X_eval)
result_eval = pd.DataFrame({'eval':df_eval['售电量'],'pred':eval_pred},index=df_eval['售电量'].index)
# print(result_eval)
print((result_eval['eval'].sum()-result_eval['pred'].sum())/result_eval['eval'].sum())
goal = (result_eval['eval'][-3:].sum()-result_eval['pred'][-3:].sum())/result_eval['eval'].sum()
print('goal:',goal)
goal2 = (result_eval['eval'][-23:].sum()-result_eval['pred'][-23:].sum())/result_eval['eval'].sum()
print('goal2:',goal2)
print(result_eval)
print('r2:',r2_score(y_test,y_pred))
# if abs(goal) < best_goal:
# best_goal = abs(goal)

@ -0,0 +1,165 @@
import numpy as np
import pandas as pd
import torch
from torch import nn
from multiprocessing import Pool
import matplotlib.pyplot as plt
import os
os.environ["KMP_DUPLICATE_LIB_OK"]="TRUE"
DAYS_FOR_TRAIN = 10
torch.manual_seed(42)
class LSTM_Regression(nn.Module):
def __init__(self, input_size, hidden_size, output_size=1, num_layers=2):
super().__init__()
self.lstm = nn.LSTM(input_size, hidden_size, num_layers)
self.fc = nn.Linear(hidden_size, output_size)
def forward(self, _x):
x, _ = self.lstm(_x) # _x is input, size (seq_len, batch, input_size)
s, b, h = x.shape # x is output, size (seq_len, batch, hidden_size)
x = x.view(s * b, h)
x = self.fc(x)
x = x.view(s, b, -1) # 把形状改回来
return x
def create_dataset(data, days_for_train=5) -> (np.array, np.array):
dataset_x, dataset_y = [], []
for i in range(len(data) - days_for_train-3):
_x = data[i:(i + days_for_train)]
dataset_x.append(_x)
dataset_y.append(data[i + days_for_train:i + days_for_train+3])
return (np.array(dataset_x), np.array(dataset_y))
def normal(nd):
high = nd.describe()['75%'] + 1.5*(nd.describe()['75%']-nd.describe()['25%'])
low = nd.describe()['25%'] - 1.5*(nd.describe()['75%']-nd.describe()['25%'])
return nd[(nd<high)&(nd>low)]
def run(file_dir,excel):
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
data = pd.read_excel(os.path.join(file_dir,excel), sheet_name=0,index_col=' stat_date ')
data.columns = data.columns.map(lambda x: x.strip())
data.index = pd.to_datetime(data.index,format='%Y%m%d')
data.sort_index(inplace=True)
print(data.head())
data = data.loc['2021-01':'2023-09']
data.drop(columns=[i for i in data.columns if (data[i] == 0).sum() / len(data) >= 0.5], inplace=True) # 去除0值列
print('len(data):', len(data))
list_app = []
for industry in data.columns:
df = data[industry]
df = df[df.values != 0] # 去除0值行
df = normal(df)
df = df.astype('float32').values # 转换数据类型
# 标准化到0~1
max_value = np.max(df)
min_value = np.min(df)
df = (df - min_value) / (max_value - min_value)
dataset_x, dataset_y = create_dataset(df, DAYS_FOR_TRAIN)
print('len(dataset_x:)', len(dataset_x))
# 划分训练集和测试集
train_size = len(dataset_x) - 3
train_x = dataset_x[:train_size]
train_y = dataset_y[:train_size]
# 将数据改变形状RNN 读入的数据维度是 (seq_size, batch_size, feature_size)
train_x = train_x.reshape(-1, 1, DAYS_FOR_TRAIN)
train_y = train_y.reshape(-1, 1, 3)
# 转为pytorch的tensor对象
train_x = torch.from_numpy(train_x).to(device)
train_y = torch.from_numpy(train_y).to(device)
model = LSTM_Regression(DAYS_FOR_TRAIN, 32, output_size=3, num_layers=2).to(device) # 导入模型并设置模型的参数输入输出层、隐藏层等
train_loss = []
loss_function = nn.MSELoss()
optimizer = torch.optim.Adam(model.parameters(), lr=0.005, betas=(0.9, 0.999), eps=1e-08, weight_decay=0)
for i in range(1500):
out = model(train_x)
loss = loss_function(out, train_y)
loss.backward()
optimizer.step()
optimizer.zero_grad()
train_loss.append(loss.item())
# print(loss)
# 保存模型
# torch.save(model.state_dict(),save_filename)
# torch.save(model.state_dict(),os.path.join(model_save_dir,model_file))
# for test
model = model.eval() # 转换成测试模式
# model.load_state_dict(torch.load(os.path.join(model_save_dir,model_file))) # 读取参数
dataset_x = dataset_x.reshape(-1, 1, DAYS_FOR_TRAIN) # (seq_size, batch_size, feature_size)
dataset_x = torch.from_numpy(dataset_x).to(device)
pred_test = model(dataset_x) # 全量训练集
# 模型输出 (seq_size, batch_size, output_size)
pred_test = pred_test.view(-1)
pred_test = np.concatenate((np.zeros(DAYS_FOR_TRAIN), pred_test.cpu().detach().numpy()))
# plt.plot(pred_test, 'r', label='prediction')
# plt.plot(df, 'b', label='real')
# plt.plot((train_size, train_size), (0, 1), 'g--') # 分割线 左边是训练数据 右边是测试数据的输出
# plt.legend(loc='best')
# plt.show()
# 创建测试集
# result_list = []
# 以x为基础实际数据滚动预测未来3天
x = torch.from_numpy(df[-14:-4]).to(device)
pred = model(x.reshape(-1,1,DAYS_FOR_TRAIN)).view(-1).detach().numpy()
# for i in range(3):
# next_1_8 = x[1:]
# next_9 = model(x.reshape(-1,1,DAYS_FOR_TRAIN))
# # print(next_9,next_1_8)
# x = torch.concatenate((next_1_8, next_9.view(-1)))
# result_list.append(next_9.view(-1).item())
# 反归一化
pred = pred * (max_value - min_value) + min_value
df = df * (max_value - min_value) + min_value
print(pred)
# 打印指标
print(abs(pred - df[-3:]).mean() / df[-3:].mean())
result_eight = pd.DataFrame({'pred': np.round(pred,1),'real': df[-3:]})
target = (result_eight['pred'].sum() - result_eight['real'].sum()) / df[-31:].sum()
result_eight['loss_rate'] = round(target, 5)
result_eight['industry'] = industry
list_app.append(result_eight)
print(target)
print(result_eight)
final_df = pd.concat(list_app,ignore_index=True)
final_df.to_csv('市行业电量.csv',encoding='gbk')
print(final_df)
# result_eight.to_csv(f'./月底预测结果/9月{excel[:2]}.txt', sep='\t', mode='a')
# with open(fr'./偏差/9月底偏差率.txt', 'a', encoding='utf-8') as f:
# f.write(f'{excel[:2]}{industry}:{round(target, 5)}\n')
if __name__ == '__main__':
file_dir = r'C:\Users\user\Desktop\浙江各地市分电压日电量数据'
run(file_dir,'杭州.xlsx')
# p = Pool(4)
# for excel in os.listdir(file_dir):
# p.apply_async(func=run,args=(file_dir,excel))
# p.close()
# p.join()
Loading…
Cancel
Save