diff --git a/入模数据/1.py b/入模数据/1.py new file mode 100644 index 0000000..ee25aa9 --- /dev/null +++ b/入模数据/1.py @@ -0,0 +1,121 @@ +import xgboost as xgb +import pandas as pd +import os +from sklearn.metrics import r2_score +from sklearn.model_selection import train_test_split +import matplotlib as mpl +import matplotlib.pyplot as plt +mpl.rcParams['font.sans-serif']=['kaiti'] + +pd.set_option('display.width',None) + +def hf_season(x): + list1= [] + for i in range(1,13): + if x.loc[f'2021-{i}'].mean() >= x.describe()['75%']: + list1.append(i) + return list1 + + + +def season(x): + if str(x)[5:7] in ('06','07','08','12','01','02'): + return 1 + else: + return 0 +def month(x): + if str(x)[5:7] in ('08','09','10','12','01','02'): + return 1 + else: + return 0 +def normal(nd): + high = nd.describe()['75%'] + 1.5*(nd.describe()['75%']-nd.describe()['25%']) + low = nd.describe()['25%'] - 1.5*(nd.describe()['75%']-nd.describe()['25%']) + return nd[(ndlow)] + + +data = pd.read_excel(r'C:\python-project\pytorch3\入模数据\杭州数据.xlsx',index_col='dtdate') +data.index = pd.to_datetime(data.index,format='%Y-%m-%d') +data = data.loc[normal(data['售电量']).index] +# for i in range(1,13): +# plt.plot(range(len(data['售电量'][f'2022-{i}'])),data['售电量'][f'2022-{i}']) +# plt.show() +print(data['售电量']['2022-9']) +plt.plot(range(len(data['售电量']['2022-7'])),data['售电量']['2022-7']) +plt.plot(range(len(data['售电量']['2022-7']),len(data['售电量']['2022-7'])+len(data['售电量']['2023-7'])),data['售电量']['2023-7']) +# plt.plot(range(len(data['售电量'][['2022-9','2023-9']])),data['售电量'][['2022-9','2023-9']]) +plt.show() + +# print(hf_season(data.loc['2021']['售电量'])) + +data['month'] = data.index.strftime('%Y-%m-%d').str[6] +data['month'] = data['month'].astype('int') +data['season'] = data.index.map(season) +print(data.head(50)) + +df_eval = data.loc['2023-7'] +df_train = data.loc['2021-1':'2023-6'] +# df_train = df[500:850] +print(len(df_eval),len(df_train),len(data)) + +print(data.drop(columns='city_name').corr(method='pearson')['售电量']) + +df_train = df_train[['tem_max','tem_min','24ST','rh','rh_max','prs','prs_max','prs_min','售电量','month','holiday','season']] + + +# IQR = df['售电量'].describe()['75%'] - df['售电量'].describe()['25%'] +# high = df['售电量'].describe()['75%'] + 1.5*IQR +# low = df['售电量'].describe()['25%'] - 1.5*IQR +# print('异常值数量:',len(df[(df['售电量'] >= high) | (df['售电量'] <= low)])) +# +# df_train = df_train[(df['售电量'] <= high) & (df['售电量'] >= low)] + + +X = df_train[['tem_max','tem_min','24ST','holiday','season']] +X_eval = df_eval[['tem_max','tem_min','24ST','holiday','season']] +y = df_train['售电量'] +print(y.describe()) +# best_goal = 1 +# best_i = {} +# for i in range(400): + +x_train,x_test,y_train,y_test = train_test_split(X,y,test_size=0.15,random_state=42) +model = xgb.XGBRegressor(max_depth=6, learning_rate=0.05, n_estimators=150) +model.fit(x_train,y_train) + +y_pred = model.predict(x_test) +result_test = pd.DataFrame({'test':y_test,'pred':y_pred},index=y_test.index) + +# 指标打印 +print(abs(y_test - y_pred).mean() / y_test.mean()) +eval_pred = model.predict(X_eval) + +result_eval = pd.DataFrame({'eval':df_eval['售电量'],'pred':eval_pred},index=df_eval['售电量'].index) + +print((result_eval['eval'].sum()-result_eval['pred'].sum())/result_eval['eval'].sum()) + +goal = (result_eval['eval'][-3:].sum()-result_eval['pred'][-3:].sum())/result_eval['eval'].sum() +print('goal:',goal) + +goal2 = (result_eval['eval'][-23:].sum()-result_eval['pred'][-23:].sum())/result_eval['eval'].sum() + +print('goal2:',goal2) +print(result_eval) +print('r2:',r2_score(y_test,y_pred)) + # if abs(goal) < best_goal: + # best_goal = abs(goal) + # best_i['best_i'] = i + # x = goal2 +# print(best_i,best_goal,x) + + + +# result_eval.to_csv(r'C:\Users\user\Desktop\9月各地市日电量预测结果\杭州.csv') +# with open(r'C:\Users\user\Desktop\9月各地市日电量预测结果\偏差率.txt','a',encoding='utf-8') as f: +# f.write(f'杭州月末3天偏差率:{round(goal,5)},9号-月底偏差率:{round(goal2,5)}\n') +# # 保存模型 +# model.save_model('hangzhou.bin') +# loaded_model = xgb.XGBRegressor() +# loaded_model.load_model('hangzhou.bin') +# model.predict(X_eval) + diff --git a/入模数据/杭州数据.xlsx b/入模数据/杭州数据.xlsx index bf4fd71..044de43 100644 Binary files a/入模数据/杭州数据.xlsx and b/入模数据/杭州数据.xlsx differ diff --git a/区域电量19年至今数据.py b/区域电量19年至今数据.py new file mode 100644 index 0000000..e2ce2ae --- /dev/null +++ b/区域电量19年至今数据.py @@ -0,0 +1,177 @@ +import xgboost as xgb +import pandas as pd +import os +from sklearn.metrics import r2_score +from sklearn.model_selection import train_test_split +import matplotlib as mpl +import matplotlib.pyplot as plt +import datetime +import math +from sklearn.preprocessing import LabelEncoder +mpl.rcParams['font.sans-serif']=['kaiti'] +pd.set_option('display.width',None) + + + + + + +def season(x): + if str(x)[5:7] in ['07', '08']: + return 2 + elif str(x)[5:7] in ['01', '02', '03', '06', '09', '11', '12']: + return 1 + elif str(x)[5:7] in['04', '05', '10']: + return 0 +def normal(nd): + high = nd.describe()['75%'] + 1.5*(nd.describe()['75%']-nd.describe()['25%']) + low = nd.describe()['25%'] - 1.5*(nd.describe()['75%']-nd.describe()['25%']) + return nd[(ndlow)].index + +# df = pd.read_excel(r'C:\Users\鸽子\Desktop\杭州19年至今日电量及气象数据.xlsx',sheet_name=0) +# df_elec = pd.read_excel(r'C:\Users\鸽子\Desktop\杭州19年至今日电量及气象数据.xlsx',sheet_name=1) +# df_elec.columns = df_elec.columns.map(lambda x:x.strip()) +# df_elec['售电量'] = df_elec['售电量']/10000 +# df.columns = df.columns.map(lambda x:x.strip()) +# df = df[['dtdate','tem_max','tem_min']] +# # print(df.head()) +# # print(df_elec.head()) +# +# merge_df = pd.merge(df_elec,df,left_on='pt_date',right_on='dtdate')[['pt_date','tem_max','tem_min','售电量']] +# merge_df.set_index('pt_date',inplace=True) +# merge_df.index = pd.to_datetime(merge_df.index,format='%Y%m%d') +# +# +# merge_df['month'] = merge_df.index.strftime('%Y-%m-%d').str[5:7] +# merge_df['month'] = merge_df['month'].astype('int') +# merge_df.to_csv('杭州入模数据.csv',encoding='gbk') +data = pd.read_csv(r'杭州入模数据.csv',encoding='gbk') + +data.drop_duplicates(subset='pt_date',inplace=True) + +data.set_index('pt_date',inplace=True) +data.index = pd.to_datetime(data.index) + +print(data.loc['2023-07']) +def jq(y,x): + a=365.242 * (y - 1900) + 6.2 + 15.22 * x - 1.9 * math.sin(0.262 * x) + return datetime.date(1899,12,31)+datetime.timedelta(days=int(a)) +# print(jq(2020,0)) +jq_list=['小寒', '大寒', '立春', '雨水', '惊蛰', '春分', '清明', '谷雨', '立夏', '小满', '芒种', '夏至', '小暑', '大暑', '立秋', '处暑', '白露', '秋分', '寒露', '霜降', '立冬', '小雪', '大雪','冬至'] +jq_dict={} +for j in range(2019,2024): + for i in range(24): + jq_dict[jq(j,i).strftime('%Y-%m-%d')]=jq_list[i] +# print(jq_dict) + +data['24ST']=data.index +data['24ST']=data['24ST'].astype('string').map(jq_dict) +data['24ST'].fillna(method='ffill',inplace=True) +data['24ST'].fillna('冬至',inplace=True) + + +# data为数据集 product_tags为需要编码的特征列(假设为第一列) +le = LabelEncoder() +data['24ST'] = le.fit_transform(data['24ST']) +data = data.loc[normal(data['售电量'])] + +data['season'] = data.index.map(season) +print(data['售电量'].describe()) +print(data) +# list2 = [] +# list0 = [] +# list1 = [] +# for i in ('01','02','03','04','05','06','07','08','09','10','11','12'): +# month_index = df.index.strftime('%Y-%m-%d').str[5:7] == f'{i}' +# if df.loc[month_index]['售电量'].mean() >= df['售电量'].describe()['75%']: +# list2.append(i) +# elif df.loc[month_index]['售电量'].mean() <= df['售电量'].describe()['25%']: +# list0.append(i) +# else: +# list1.append(i) +# print(list0,list1,list2) + + + +# data = pd.read_excel(r'C:\python-project\pytorch3\入模数据\杭州数据.xlsx',index_col='dtdate') +# data.index = pd.to_datetime(data.index,format='%Y-%m-%d') +# data = data.loc[normal(data['售电量']).index] +# plt.plot(range(len(data['售电量']['2021':'2022'])),data['售电量']['2021':'2022']) +# plt.show() + +# # print(hf_season(data.loc['2021']['售电量'])) + +# data['month'] = data.index.strftime('%Y-%m-%d').str[6] +# data['month'] = data['month'].astype('int') +# data['season'] = data.index.map(season) +# print(data.head(50)) +# +df_eval = data.loc['2023-9'] +df_train = data.loc['2019-1':'2023-8'] +print(len(df_train),len(df_eval)) +plt.plot(range(len(data.loc['2019-1':'2023-9'])),data.loc['2019-1':'2023-9']) +plt.show() +# df_train = df[500:850] +print(len(df_eval),len(df_train),len(data)) + +print(data.corr(method='pearson')['售电量']) + +df_train = df_train[['tem_max','tem_min','24ST','售电量','season']] + + +# IQR = df['售电量'].describe()['75%'] - df['售电量'].describe()['25%'] +# high = df['售电量'].describe()['75%'] + 1.5*IQR +# low = df['售电量'].describe()['25%'] - 1.5*IQR +# print('异常值数量:',len(df[(df['售电量'] >= high) | (df['售电量'] <= low)])) +# +# df_train = df_train[(df['售电量'] <= high) & (df['售电量'] >= low)] + + +X = df_train[['tem_max','tem_min','season','24ST']] +X_eval = df_eval[['tem_max','tem_min','season','24ST']] +y = df_train['售电量'] +print(y.describe()) +# best_goal = 1 +# best_i = {} +# for i in range(400): + +x_train,x_test,y_train,y_test = train_test_split(X,y,test_size=0.2,random_state=42) +model = xgb.XGBRegressor(max_depth=6, learning_rate=0.05, n_estimators=150) +model.fit(x_train,y_train) + +y_pred = model.predict(x_test) +result_test = pd.DataFrame({'test':y_test,'pred':y_pred},index=y_test.index) + +# 指标打印 +print(abs(y_test - y_pred).mean() / y_test.mean()) +eval_pred = model.predict(X_eval) + +result_eval = pd.DataFrame({'eval':df_eval['售电量'],'pred':eval_pred},index=df_eval['售电量'].index) + +print((result_eval['eval'].sum()-result_eval['pred'].sum())/result_eval['eval'].sum()) + +goal = (result_eval['eval'][-3:].sum()-result_eval['pred'][-3:].sum())/result_eval['eval'].sum() +print('goal:',goal) + +goal2 = (result_eval['eval'][-23:].sum()-result_eval['pred'][-23:].sum())/result_eval['eval'].sum() + +print('goal2:',goal2) +print(result_eval) +print('r2:',r2_score(y_test,y_pred)) +# if abs(goal) < best_goal: +# best_goal = abs(goal) +# best_i['best_i'] = i +# x = goal2 +# print(best_i,best_goal,x) + + + +# result_eval.to_csv(r'C:\Users\user\Desktop\9月各地市日电量预测结果\杭州.csv') +# with open(r'C:\Users\user\Desktop\9月各地市日电量预测结果\偏差率.txt','a',encoding='utf-8') as f: +# f.write(f'杭州月末3天偏差率:{round(goal,5)},9号-月底偏差率:{round(goal2,5)}\n') +# # 保存模型 +# model.save_model('hangzhou.bin') +# loaded_model = xgb.XGBRegressor() +# loaded_model.load_model('hangzhou.bin') +# model.predict(X_eval) + diff --git a/各地级市日电量模型/杭州.py b/各地级市日电量模型/杭州.py index 3e7661f..bf5de92 100644 --- a/各地级市日电量模型/杭州.py +++ b/各地级市日电量模型/杭州.py @@ -37,7 +37,7 @@ def normal(nd): data = pd.read_excel(r'C:\python-project\pytorch3\入模数据\杭州数据.xlsx',index_col='dtdate') data.index = pd.to_datetime(data.index,format='%Y-%m-%d') data = data.loc[normal(data['售电量']).index] -plt.plot(range(len(data)),data['售电量']) +plt.plot(range(len(data['售电量']['2021':'2022'])),data['售电量']['2021':'2022']) plt.show() # print(hf_season(data.loc['2021']['售电量'])) @@ -47,12 +47,12 @@ data['month'] = data['month'].astype('int') data['season'] = data.index.map(season) print(data.head(50)) -df_eval = data.loc['2023-9'] -df_train = data.loc['2021-1':'2023-8'] +df_eval = data.loc['2023-7'] +df_train = data.loc['2021-1':'2023-6'] # df_train = df[500:850] print(len(df_eval),len(df_train),len(data)) -print(data.drop(columns='city_name').corr(method='pearson')['season']) +print(data.drop(columns='city_name').corr(method='pearson')['售电量']) df_train = df_train[['tem_max','tem_min','24ST','rh','rh_max','prs','prs_max','prs_min','售电量','month','holiday','season']] @@ -73,7 +73,7 @@ print(y.describe()) # best_i = {} # for i in range(400): -x_train,x_test,y_train,y_test = train_test_split(X,y,test_size=0.15,random_state=209) +x_train,x_test,y_train,y_test = train_test_split(X,y,test_size=0.15,random_state=42) model = xgb.XGBRegressor(max_depth=6, learning_rate=0.05, n_estimators=150) model.fit(x_train,y_train) @@ -85,19 +85,21 @@ print(abs(y_test - y_pred).mean() / y_test.mean()) eval_pred = model.predict(X_eval) result_eval = pd.DataFrame({'eval':df_eval['售电量'],'pred':eval_pred},index=df_eval['售电量'].index) -# print(result_eval) + print((result_eval['eval'].sum()-result_eval['pred'].sum())/result_eval['eval'].sum()) goal = (result_eval['eval'][-3:].sum()-result_eval['pred'][-3:].sum())/result_eval['eval'].sum() print('goal:',goal) goal2 = (result_eval['eval'][-23:].sum()-result_eval['pred'][-23:].sum())/result_eval['eval'].sum() + print('goal2:',goal2) +print(result_eval) print('r2:',r2_score(y_test,y_pred)) -# if abs(goal) < best_goal: -# best_goal = abs(goal) -# best_i['best_i'] = i -# x = goal2 + # if abs(goal) < best_goal: + # best_goal = abs(goal) + # best_i['best_i'] = i + # x = goal2 # print(best_i,best_goal,x) diff --git a/杭州日电量/浙江所有地市133行业数据/丽水133行业数据(全).xlsx b/杭州日电量/浙江所有地市133行业数据/丽水133行业数据(全).xlsx deleted file mode 100644 index 9b90065..0000000 Binary files a/杭州日电量/浙江所有地市133行业数据/丽水133行业数据(全).xlsx and /dev/null differ diff --git a/杭州日电量/浙江所有地市133行业数据/台州133行业数据(全).xlsx b/杭州日电量/浙江所有地市133行业数据/台州133行业数据(全).xlsx deleted file mode 100644 index 21df9fa..0000000 Binary files a/杭州日电量/浙江所有地市133行业数据/台州133行业数据(全).xlsx and /dev/null differ diff --git a/浙江电压等级电量/电压等级_输出为3.py b/浙江电压等级电量/电压等级_输出为3.py new file mode 100644 index 0000000..d8feb5a --- /dev/null +++ b/浙江电压等级电量/电压等级_输出为3.py @@ -0,0 +1,165 @@ +import numpy as np +import pandas as pd +import torch +from torch import nn +from multiprocessing import Pool +import matplotlib.pyplot as plt +import os +os.environ["KMP_DUPLICATE_LIB_OK"]="TRUE" +DAYS_FOR_TRAIN = 10 +torch.manual_seed(42) +class LSTM_Regression(nn.Module): + + def __init__(self, input_size, hidden_size, output_size=1, num_layers=2): + super().__init__() + + self.lstm = nn.LSTM(input_size, hidden_size, num_layers) + self.fc = nn.Linear(hidden_size, output_size) + + def forward(self, _x): + x, _ = self.lstm(_x) # _x is input, size (seq_len, batch, input_size) + s, b, h = x.shape # x is output, size (seq_len, batch, hidden_size) + x = x.view(s * b, h) + x = self.fc(x) + x = x.view(s, b, -1) # 把形状改回来 + return x + + +def create_dataset(data, days_for_train=5) -> (np.array, np.array): + dataset_x, dataset_y = [], [] + for i in range(len(data) - days_for_train-3): + _x = data[i:(i + days_for_train)] + dataset_x.append(_x) + dataset_y.append(data[i + days_for_train:i + days_for_train+3]) + return (np.array(dataset_x), np.array(dataset_y)) + +def normal(nd): + high = nd.describe()['75%'] + 1.5*(nd.describe()['75%']-nd.describe()['25%']) + low = nd.describe()['25%'] - 1.5*(nd.describe()['75%']-nd.describe()['25%']) + return nd[(ndlow)] + +def run(file_dir,excel): + device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') + + data = pd.read_excel(os.path.join(file_dir,excel), sheet_name=0,index_col=' stat_date ') + + data.columns = data.columns.map(lambda x: x.strip()) + + data.index = pd.to_datetime(data.index,format='%Y%m%d') + data.sort_index(inplace=True) + print(data.head()) + data = data.loc['2021-01':'2023-09'] + + data.drop(columns=[i for i in data.columns if (data[i] == 0).sum() / len(data) >= 0.5], inplace=True) # 去除0值列 + print('len(data):', len(data)) + list_app = [] + for industry in data.columns: + df = data[industry] + df = df[df.values != 0] # 去除0值行 + df = normal(df) + df = df.astype('float32').values # 转换数据类型 + + + # 标准化到0~1 + max_value = np.max(df) + min_value = np.min(df) + df = (df - min_value) / (max_value - min_value) + + dataset_x, dataset_y = create_dataset(df, DAYS_FOR_TRAIN) + print('len(dataset_x:)', len(dataset_x)) + + # 划分训练集和测试集 + train_size = len(dataset_x) - 3 + train_x = dataset_x[:train_size] + train_y = dataset_y[:train_size] + + # 将数据改变形状,RNN 读入的数据维度是 (seq_size, batch_size, feature_size) + train_x = train_x.reshape(-1, 1, DAYS_FOR_TRAIN) + train_y = train_y.reshape(-1, 1, 3) + + # 转为pytorch的tensor对象 + train_x = torch.from_numpy(train_x).to(device) + train_y = torch.from_numpy(train_y).to(device) + + model = LSTM_Regression(DAYS_FOR_TRAIN, 32, output_size=3, num_layers=2).to(device) # 导入模型并设置模型的参数输入输出层、隐藏层等 + + + train_loss = [] + loss_function = nn.MSELoss() + optimizer = torch.optim.Adam(model.parameters(), lr=0.005, betas=(0.9, 0.999), eps=1e-08, weight_decay=0) + for i in range(1500): + out = model(train_x) + loss = loss_function(out, train_y) + loss.backward() + optimizer.step() + optimizer.zero_grad() + train_loss.append(loss.item()) + # print(loss) + # 保存模型 + # torch.save(model.state_dict(),save_filename) + # torch.save(model.state_dict(),os.path.join(model_save_dir,model_file)) + + # for test + model = model.eval() # 转换成测试模式 + # model.load_state_dict(torch.load(os.path.join(model_save_dir,model_file))) # 读取参数 + dataset_x = dataset_x.reshape(-1, 1, DAYS_FOR_TRAIN) # (seq_size, batch_size, feature_size) + dataset_x = torch.from_numpy(dataset_x).to(device) + + pred_test = model(dataset_x) # 全量训练集 + # 模型输出 (seq_size, batch_size, output_size) + pred_test = pred_test.view(-1) + pred_test = np.concatenate((np.zeros(DAYS_FOR_TRAIN), pred_test.cpu().detach().numpy())) + + # plt.plot(pred_test, 'r', label='prediction') + # plt.plot(df, 'b', label='real') + # plt.plot((train_size, train_size), (0, 1), 'g--') # 分割线 左边是训练数据 右边是测试数据的输出 + # plt.legend(loc='best') + # plt.show() + + + # 创建测试集 + # result_list = [] + # 以x为基础实际数据,滚动预测未来3天 + x = torch.from_numpy(df[-14:-4]).to(device) + pred = model(x.reshape(-1,1,DAYS_FOR_TRAIN)).view(-1).detach().numpy() + + + # for i in range(3): + # next_1_8 = x[1:] + # next_9 = model(x.reshape(-1,1,DAYS_FOR_TRAIN)) + # # print(next_9,next_1_8) + # x = torch.concatenate((next_1_8, next_9.view(-1))) + # result_list.append(next_9.view(-1).item()) + + + # 反归一化 + pred = pred * (max_value - min_value) + min_value + df = df * (max_value - min_value) + min_value + + print(pred) + # 打印指标 + print(abs(pred - df[-3:]).mean() / df[-3:].mean()) + result_eight = pd.DataFrame({'pred': np.round(pred,1),'real': df[-3:]}) + target = (result_eight['pred'].sum() - result_eight['real'].sum()) / df[-31:].sum() + result_eight['loss_rate'] = round(target, 5) + result_eight['industry'] = industry + list_app.append(result_eight) + print(target) + print(result_eight) + final_df = pd.concat(list_app,ignore_index=True) + final_df.to_csv('市行业电量.csv',encoding='gbk') + print(final_df) + + # result_eight.to_csv(f'./月底预测结果/9月{excel[:2]}.txt', sep='\t', mode='a') + # with open(fr'./偏差/9月底偏差率.txt', 'a', encoding='utf-8') as f: + # f.write(f'{excel[:2]}{industry}:{round(target, 5)}\n') + +if __name__ == '__main__': + file_dir = r'C:\Users\user\Desktop\浙江各地市分电压日电量数据' + + run(file_dir,'杭州.xlsx') + # p = Pool(4) + # for excel in os.listdir(file_dir): + # p.apply_async(func=run,args=(file_dir,excel)) + # p.close() + # p.join() \ No newline at end of file