更新电压lstm模型

main
get 1 year ago
parent b4f45d85f4
commit c422102805

@ -52,61 +52,61 @@ def data_preprocessing(data):
return data return data
# 拼接数据集 # 拼接数据集
# file_dir = r'C:\Users\user\Desktop\浙江各地市分电压日电量数据' file_dir = r'C:\Users\user\Desktop\浙江各地市分电压日电量数据'
# excel = os.listdir(file_dir)[0] excel = os.listdir(file_dir)[0]
# data = pd.read_excel(os.path.join(file_dir, excel), sheet_name=0, index_col='stat_date') data = pd.read_excel(os.path.join(file_dir, excel), sheet_name=0, index_col='stat_date')
# data.drop(columns='地市',inplace=True) data.drop(columns='地市',inplace=True)
# data = data_preprocessing(data) data = data_preprocessing(data)
#
# df = data[data.columns[0]] df = data[data.columns[0]]
# df.dropna(inplace = True) df.dropna(inplace = True)
# dataset_x, dataset_y = create_dataset(df, DAYS_FOR_TRAIN) dataset_x, dataset_y = create_dataset(df, DAYS_FOR_TRAIN)
#
# for level in data.columns[1:]: for level in data.columns[1:]:
# df = data[level] df = data[level]
# df.dropna(inplace=True) df.dropna(inplace=True)
# x, y = create_dataset(df, DAYS_FOR_TRAIN) x, y = create_dataset(df, DAYS_FOR_TRAIN)
# dataset_x = np.concatenate((dataset_x, x)) dataset_x = np.concatenate((dataset_x, x))
# dataset_y = np.concatenate((dataset_y, y)) dataset_y = np.concatenate((dataset_y, y))
#
#
# for excel in os.listdir(file_dir)[1:]: for excel in os.listdir(file_dir)[1:]:
#
# data = pd.read_excel(os.path.join(file_dir,excel), sheet_name=0,index_col='stat_date') data = pd.read_excel(os.path.join(file_dir,excel), sheet_name=0,index_col='stat_date')
# data.drop(columns='地市', inplace=True) data.drop(columns='地市', inplace=True)
# data = data_preprocessing(data) data = data_preprocessing(data)
#
# for level in data.columns: for level in data.columns:
# df = data[level] df = data[level]
# df.dropna(inplace=True) df.dropna(inplace=True)
# x,y = create_dataset(df,DAYS_FOR_TRAIN) x,y = create_dataset(df,DAYS_FOR_TRAIN)
# dataset_x = np.concatenate((dataset_x,x)) dataset_x = np.concatenate((dataset_x,x))
# dataset_y = np.concatenate((dataset_y,y)) dataset_y = np.concatenate((dataset_y,y))
#
#
#
# # 训练 # # 训练
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
# #
# # 标准化到0~1 # 标准化到0~1
# max_value = np.max(dataset_x) max_value = np.max(dataset_x)
# min_value = np.min(dataset_x) min_value = np.min(dataset_x)
# dataset_x = (dataset_x - min_value) / (max_value - min_value) dataset_x = (dataset_x - min_value) / (max_value - min_value)
# dataset_y = (dataset_y - min_value) / (max_value - min_value) dataset_y = (dataset_y - min_value) / (max_value - min_value)
#
# print(max_value,min_value) print(max_value,min_value)
# # 划分训练集和测试集 # 划分训练集和测试集
# train_size = int(len(dataset_x)*0.7) train_size = int(len(dataset_x)*0.7)
# train_x = dataset_x[:train_size] train_x = dataset_x[:train_size]
# train_y = dataset_y[:train_size] train_y = dataset_y[:train_size]
#
# # 将数据改变形状RNN 读入的数据维度是 (seq_size, batch_size, feature_size) # 将数据改变形状RNN 读入的数据维度是 (seq_size, batch_size, feature_size)
# train_x = train_x.reshape(-1, 1, DAYS_FOR_TRAIN) train_x = train_x.reshape(-1, 1, DAYS_FOR_TRAIN)
# train_y = train_y.reshape(-1, 1, 5) train_y = train_y.reshape(-1, 1, 5)
#
# # 转为pytorch的tensor对象 # 转为pytorch的tensor对象
# train_x = torch.from_numpy(train_x).to(device).type(torch.float32) train_x = torch.from_numpy(train_x).to(device).type(torch.float32)
# train_y = torch.from_numpy(train_y).to(device).type(torch.float32) train_y = torch.from_numpy(train_y).to(device).type(torch.float32)
model = LSTM_Regression(DAYS_FOR_TRAIN, 32, output_size=5, num_layers=2).to(device) # 导入模型并设置模型的参数输入输出层、隐藏层等 model = LSTM_Regression(DAYS_FOR_TRAIN, 32, output_size=5, num_layers=2).to(device) # 导入模型并设置模型的参数输入输出层、隐藏层等

Loading…
Cancel
Save