|
|
@ -52,61 +52,61 @@ def data_preprocessing(data):
|
|
|
|
return data
|
|
|
|
return data
|
|
|
|
|
|
|
|
|
|
|
|
# 拼接数据集
|
|
|
|
# 拼接数据集
|
|
|
|
# file_dir = r'C:\Users\user\Desktop\浙江各地市分电压日电量数据'
|
|
|
|
file_dir = r'C:\Users\user\Desktop\浙江各地市分电压日电量数据'
|
|
|
|
# excel = os.listdir(file_dir)[0]
|
|
|
|
excel = os.listdir(file_dir)[0]
|
|
|
|
# data = pd.read_excel(os.path.join(file_dir, excel), sheet_name=0, index_col='stat_date')
|
|
|
|
data = pd.read_excel(os.path.join(file_dir, excel), sheet_name=0, index_col='stat_date')
|
|
|
|
# data.drop(columns='地市',inplace=True)
|
|
|
|
data.drop(columns='地市',inplace=True)
|
|
|
|
# data = data_preprocessing(data)
|
|
|
|
data = data_preprocessing(data)
|
|
|
|
#
|
|
|
|
|
|
|
|
# df = data[data.columns[0]]
|
|
|
|
df = data[data.columns[0]]
|
|
|
|
# df.dropna(inplace = True)
|
|
|
|
df.dropna(inplace = True)
|
|
|
|
# dataset_x, dataset_y = create_dataset(df, DAYS_FOR_TRAIN)
|
|
|
|
dataset_x, dataset_y = create_dataset(df, DAYS_FOR_TRAIN)
|
|
|
|
#
|
|
|
|
|
|
|
|
# for level in data.columns[1:]:
|
|
|
|
for level in data.columns[1:]:
|
|
|
|
# df = data[level]
|
|
|
|
df = data[level]
|
|
|
|
# df.dropna(inplace=True)
|
|
|
|
df.dropna(inplace=True)
|
|
|
|
# x, y = create_dataset(df, DAYS_FOR_TRAIN)
|
|
|
|
x, y = create_dataset(df, DAYS_FOR_TRAIN)
|
|
|
|
# dataset_x = np.concatenate((dataset_x, x))
|
|
|
|
dataset_x = np.concatenate((dataset_x, x))
|
|
|
|
# dataset_y = np.concatenate((dataset_y, y))
|
|
|
|
dataset_y = np.concatenate((dataset_y, y))
|
|
|
|
#
|
|
|
|
|
|
|
|
#
|
|
|
|
|
|
|
|
# for excel in os.listdir(file_dir)[1:]:
|
|
|
|
for excel in os.listdir(file_dir)[1:]:
|
|
|
|
#
|
|
|
|
|
|
|
|
# data = pd.read_excel(os.path.join(file_dir,excel), sheet_name=0,index_col='stat_date')
|
|
|
|
data = pd.read_excel(os.path.join(file_dir,excel), sheet_name=0,index_col='stat_date')
|
|
|
|
# data.drop(columns='地市', inplace=True)
|
|
|
|
data.drop(columns='地市', inplace=True)
|
|
|
|
# data = data_preprocessing(data)
|
|
|
|
data = data_preprocessing(data)
|
|
|
|
#
|
|
|
|
|
|
|
|
# for level in data.columns:
|
|
|
|
for level in data.columns:
|
|
|
|
# df = data[level]
|
|
|
|
df = data[level]
|
|
|
|
# df.dropna(inplace=True)
|
|
|
|
df.dropna(inplace=True)
|
|
|
|
# x,y = create_dataset(df,DAYS_FOR_TRAIN)
|
|
|
|
x,y = create_dataset(df,DAYS_FOR_TRAIN)
|
|
|
|
# dataset_x = np.concatenate((dataset_x,x))
|
|
|
|
dataset_x = np.concatenate((dataset_x,x))
|
|
|
|
# dataset_y = np.concatenate((dataset_y,y))
|
|
|
|
dataset_y = np.concatenate((dataset_y,y))
|
|
|
|
#
|
|
|
|
|
|
|
|
#
|
|
|
|
|
|
|
|
#
|
|
|
|
|
|
|
|
# # 训练
|
|
|
|
# # 训练
|
|
|
|
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
|
|
|
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
|
|
|
#
|
|
|
|
#
|
|
|
|
# # 标准化到0~1
|
|
|
|
# 标准化到0~1
|
|
|
|
# max_value = np.max(dataset_x)
|
|
|
|
max_value = np.max(dataset_x)
|
|
|
|
# min_value = np.min(dataset_x)
|
|
|
|
min_value = np.min(dataset_x)
|
|
|
|
# dataset_x = (dataset_x - min_value) / (max_value - min_value)
|
|
|
|
dataset_x = (dataset_x - min_value) / (max_value - min_value)
|
|
|
|
# dataset_y = (dataset_y - min_value) / (max_value - min_value)
|
|
|
|
dataset_y = (dataset_y - min_value) / (max_value - min_value)
|
|
|
|
#
|
|
|
|
|
|
|
|
# print(max_value,min_value)
|
|
|
|
print(max_value,min_value)
|
|
|
|
# # 划分训练集和测试集
|
|
|
|
# 划分训练集和测试集
|
|
|
|
# train_size = int(len(dataset_x)*0.7)
|
|
|
|
train_size = int(len(dataset_x)*0.7)
|
|
|
|
# train_x = dataset_x[:train_size]
|
|
|
|
train_x = dataset_x[:train_size]
|
|
|
|
# train_y = dataset_y[:train_size]
|
|
|
|
train_y = dataset_y[:train_size]
|
|
|
|
#
|
|
|
|
|
|
|
|
# # 将数据改变形状,RNN 读入的数据维度是 (seq_size, batch_size, feature_size)
|
|
|
|
# 将数据改变形状,RNN 读入的数据维度是 (seq_size, batch_size, feature_size)
|
|
|
|
# train_x = train_x.reshape(-1, 1, DAYS_FOR_TRAIN)
|
|
|
|
train_x = train_x.reshape(-1, 1, DAYS_FOR_TRAIN)
|
|
|
|
# train_y = train_y.reshape(-1, 1, 5)
|
|
|
|
train_y = train_y.reshape(-1, 1, 5)
|
|
|
|
#
|
|
|
|
|
|
|
|
# # 转为pytorch的tensor对象
|
|
|
|
# 转为pytorch的tensor对象
|
|
|
|
# train_x = torch.from_numpy(train_x).to(device).type(torch.float32)
|
|
|
|
train_x = torch.from_numpy(train_x).to(device).type(torch.float32)
|
|
|
|
# train_y = torch.from_numpy(train_y).to(device).type(torch.float32)
|
|
|
|
train_y = torch.from_numpy(train_y).to(device).type(torch.float32)
|
|
|
|
|
|
|
|
|
|
|
|
model = LSTM_Regression(DAYS_FOR_TRAIN, 32, output_size=5, num_layers=2).to(device) # 导入模型并设置模型的参数输入输出层、隐藏层等
|
|
|
|
model = LSTM_Regression(DAYS_FOR_TRAIN, 32, output_size=5, num_layers=2).to(device) # 导入模型并设置模型的参数输入输出层、隐藏层等
|
|
|
|
|
|
|
|
|
|
|
|