|
|
@ -42,6 +42,8 @@ def to_data(file_dir, excel):
|
|
|
|
data.sort_values(by='stat_date', ascending=True)
|
|
|
|
data.sort_values(by='stat_date', ascending=True)
|
|
|
|
data.drop(columns=[i for i in data.columns if (data[i] == 0).sum() / len(data) >= 0.5], inplace=True) # 去除0值列
|
|
|
|
data.drop(columns=[i for i in data.columns if (data[i] == 0).sum() / len(data) >= 0.5], inplace=True) # 去除0值列
|
|
|
|
print('len(data):', len(data))
|
|
|
|
print('len(data):', len(data))
|
|
|
|
|
|
|
|
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
|
|
|
|
|
|
|
print("运算类型:", device)
|
|
|
|
for industry in data.columns[1:]:
|
|
|
|
for industry in data.columns[1:]:
|
|
|
|
c = time.time()
|
|
|
|
c = time.time()
|
|
|
|
df = data[['stat_date', industry]]
|
|
|
|
df = data[['stat_date', industry]]
|
|
|
@ -71,22 +73,17 @@ def to_data(file_dir, excel):
|
|
|
|
train_x = train_x.reshape(-1, 1, DAYS_FOR_TRAIN)
|
|
|
|
train_x = train_x.reshape(-1, 1, DAYS_FOR_TRAIN)
|
|
|
|
train_y = train_y.reshape(-1, 1, 1)
|
|
|
|
train_y = train_y.reshape(-1, 1, 1)
|
|
|
|
|
|
|
|
|
|
|
|
# 使用GPU
|
|
|
|
|
|
|
|
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# 转为pytorch的tensor对象
|
|
|
|
# 转为pytorch的tensor对象
|
|
|
|
train_x = torch.from_numpy(train_x)
|
|
|
|
train_x = torch.from_numpy(train_x)
|
|
|
|
train_y = torch.from_numpy(train_y)
|
|
|
|
train_y = torch.from_numpy(train_y)
|
|
|
|
|
|
|
|
|
|
|
|
train_x = train_x.cuda()
|
|
|
|
|
|
|
|
train_y = train_y.cuda()
|
|
|
|
|
|
|
|
model = LSTM_Regression(DAYS_FOR_TRAIN, 32, output_size=1, num_layers=2) # 导入模型并设置模型的参数输入输出层、隐藏层等
|
|
|
|
model = LSTM_Regression(DAYS_FOR_TRAIN, 32, output_size=1, num_layers=2) # 导入模型并设置模型的参数输入输出层、隐藏层等
|
|
|
|
|
|
|
|
|
|
|
|
# 使用GPU
|
|
|
|
# 训练使用GPU
|
|
|
|
print("cuda" if torch.cuda.is_available() else "cpu")
|
|
|
|
if torch.cuda.is_available():
|
|
|
|
model.to(device)
|
|
|
|
train_x = train_x.cuda()
|
|
|
|
# train_x.to(device)
|
|
|
|
train_y = train_y.cuda()
|
|
|
|
# train_y.to(device)
|
|
|
|
model.to(device)
|
|
|
|
|
|
|
|
|
|
|
|
train_loss = []
|
|
|
|
train_loss = []
|
|
|
|
loss_function = nn.MSELoss()
|
|
|
|
loss_function = nn.MSELoss()
|
|
|
@ -115,11 +112,20 @@ def to_data(file_dir, excel):
|
|
|
|
|
|
|
|
|
|
|
|
dataset_x = dataset_x.reshape(-1, 1, DAYS_FOR_TRAIN) # (seq_size, batch_size, feature_size)
|
|
|
|
dataset_x = dataset_x.reshape(-1, 1, DAYS_FOR_TRAIN) # (seq_size, batch_size, feature_size)
|
|
|
|
dataset_x = torch.from_numpy(dataset_x)
|
|
|
|
dataset_x = torch.from_numpy(dataset_x)
|
|
|
|
dataset_x = dataset_x.cuda()
|
|
|
|
|
|
|
|
|
|
|
|
# 测试使用GPU
|
|
|
|
|
|
|
|
if torch.cuda.is_available():
|
|
|
|
|
|
|
|
dataset_x = dataset_x.cuda()
|
|
|
|
|
|
|
|
|
|
|
|
pred_test = model(dataset_x) # 全量训练集
|
|
|
|
pred_test = model(dataset_x) # 全量训练集
|
|
|
|
# 模型输出 (seq_size, batch_size, output_size)
|
|
|
|
# 模型输出 (seq_size, batch_size, output_size)
|
|
|
|
pred_test = pred_test.cpu()
|
|
|
|
|
|
|
|
|
|
|
|
# 测试使用GPU ######################################################### 注意调整这里,反复转换效率不高
|
|
|
|
|
|
|
|
if torch.cuda.is_available():
|
|
|
|
|
|
|
|
# 不支持将GPU tensor转换为numpy
|
|
|
|
|
|
|
|
pred_test = pred_test.cpu()
|
|
|
|
|
|
|
|
# 测试使用GPU ######################################################### 注意调整这里,反复转换效率不高
|
|
|
|
|
|
|
|
|
|
|
|
pred_test = pred_test.view(-1).data.numpy()
|
|
|
|
pred_test = pred_test.view(-1).data.numpy()
|
|
|
|
pred_test = np.concatenate((np.zeros(DAYS_FOR_TRAIN), pred_test))
|
|
|
|
pred_test = np.concatenate((np.zeros(DAYS_FOR_TRAIN), pred_test))
|
|
|
|
assert len(pred_test) == len(df)
|
|
|
|
assert len(pred_test) == len(df)
|
|
|
|