diff --git a/浙江行业电量/行业电量_输出为5.py b/浙江行业电量/行业电量_输出为5.py new file mode 100644 index 0000000..c0ddf93 --- /dev/null +++ b/浙江行业电量/行业电量_输出为5.py @@ -0,0 +1,176 @@ +import numpy as np +import pandas as pd +import torch +from torch import nn +from multiprocessing import Pool +import matplotlib.pyplot as plt +import os +os.environ["KMP_DUPLICATE_LIB_OK"]="TRUE" +DAYS_FOR_TRAIN = 10 +torch.manual_seed(42) +class LSTM_Regression(nn.Module): + + def __init__(self, input_size, hidden_size, output_size=1, num_layers=2): + super().__init__() + + self.lstm = nn.LSTM(input_size, hidden_size, num_layers) + self.fc = nn.Linear(hidden_size, output_size) + + def forward(self, _x): + x, _ = self.lstm(_x) # _x is input, size (seq_len, batch, input_size) + s, b, h = x.shape # x is output, size (seq_len, batch, hidden_size) + x = x.view(s * b, h) + x = self.fc(x) + x = x.view(s, b, -1) # 把形状改回来 + return x + + +def create_dataset(data, days_for_train=5) -> (np.array, np.array): + dataset_x, dataset_y = [], [] + for i in range(len(data) - days_for_train-5): + dataset_x.append(data[i:(i + days_for_train)]) + dataset_y.append(data[i + days_for_train:i + days_for_train+5]) + # print(dataset_x,dataset_y) + return (np.array(dataset_x), np.array(dataset_y)) + +def normal(nd): + high = nd.describe()['75%'] + 1.5*(nd.describe()['75%']-nd.describe()['25%']) + low = nd.describe()['25%'] - 1.5*(nd.describe()['75%']-nd.describe()['25%']) + return nd[(ndlow)] + +def data_preprocessing(data): + data.columns = data.columns.map(lambda x: x.strip()) + data.index = data.index.map(lambda x:x.strip()) + + data.index = pd.to_datetime(data.index,format='%Y-%m-%d') + data.sort_index(inplace=True) + data = data.loc['2021-01':'2023-08'] + data.drop(columns=[i for i in data.columns if (data[i] == 0).sum() / len(data) >= 0.5], inplace=True) # 去除0值列 + + data = data.astype(float) + for col in data.columns: + data[col] = normal(data[col]) + + return data + +# 拼接数据集 +file_dir = r'C:\Users\user\Desktop\浙江各地市行业电量数据' +excel = os.listdir(file_dir)[0] +data = pd.read_excel(os.path.join(file_dir, excel), sheet_name=0, index_col='stat_date') +data.drop(columns='地市',inplace=True) +data = data_preprocessing(data) + +df = data[data.columns[0]] +df.dropna(inplace = True) +dataset_x, dataset_y = create_dataset(df, DAYS_FOR_TRAIN) + +for level in data.columns[1:]: + df = data[level] + df.dropna(inplace=True) + x, y = create_dataset(df, DAYS_FOR_TRAIN) + dataset_x = np.concatenate((dataset_x, x)) + dataset_y = np.concatenate((dataset_y, y)) + + +for excel in os.listdir(file_dir)[1:]: + + data = pd.read_excel(os.path.join(file_dir,excel), sheet_name=0,index_col='stat_date') + data.drop(columns='地市', inplace=True) + data = data_preprocessing(data) + + for level in data.columns: + df = data[level] + df.dropna(inplace=True) + x,y = create_dataset(df,DAYS_FOR_TRAIN) + dataset_x = np.concatenate((dataset_x,x)) + dataset_y = np.concatenate((dataset_y,y)) + + + +# 训练 +device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') + +# 标准化到0~1 +max_value = np.max(dataset_x) +min_value = np.min(dataset_x) +dataset_x = (dataset_x - min_value) / (max_value - min_value) +dataset_y = (dataset_y - min_value) / (max_value - min_value) + +# 划分训练集和测试集 +train_size = int(len(dataset_x)*0.7) +train_x = dataset_x[:train_size] +train_y = dataset_y[:train_size] + +# 将数据改变形状,RNN 读入的数据维度是 (seq_size, batch_size, feature_size) +train_x = train_x.reshape(-1, 1, DAYS_FOR_TRAIN) +train_y = train_y.reshape(-1, 1, 5) + +# 转为pytorch的tensor对象 +train_x = torch.from_numpy(train_x).to(device).type(torch.float32) +train_y = torch.from_numpy(train_y).to(device).type(torch.float32) + +model = LSTM_Regression(DAYS_FOR_TRAIN, 32, output_size=5, num_layers=2).to(device) # 导入模型并设置模型的参数输入输出层、隐藏层等 + + +train_loss = [] +loss_function = nn.MSELoss() +optimizer = torch.optim.Adam(model.parameters(), lr=0.005, betas=(0.9, 0.999), eps=1e-08, weight_decay=0) +for i in range(1500): + out = model(train_x) + loss = loss_function(out, train_y) + loss.backward() + optimizer.step() + optimizer.zero_grad() + train_loss.append(loss.item()) + if i % 100 == 0: + print(f'epoch {i+1}: loss:{loss}') + +# 保存模型 +torch.save(model.state_dict(),'hy5.pth') + +# for test +model = model.eval() # 转换成测试模式 +# model.load_state_dict(torch.load(os.path.join(model_save_dir,model_file))) # 读取参数 +dataset_x = dataset_x.reshape(-1, 1, DAYS_FOR_TRAIN) # (seq_size, batch_size, feature_size) +dataset_x = torch.from_numpy(dataset_x).to(device).type(torch.float32) + +pred_test = model(dataset_x) # 全量训练集 +# 模型输出 (seq_size, batch_size, output_size) +pred_test = pred_test.view(-1) +pred_test = np.concatenate((np.zeros(DAYS_FOR_TRAIN), pred_test.cpu().detach().numpy())) + +plt.plot(pred_test.reshape(-1), 'r', label='prediction') +plt.plot(dataset_y.reshape(-1), 'b', label='real') +plt.plot((train_size*5, train_size*5), (0, 1), 'g--') # 分割线 左边是训练数据 右边是测试数据的输出 +plt.legend(loc='best') +plt.show() + + +# 创建测试集 +# result_list = [] +# 以x为基础实际数据,滚动预测未来3天 +# x = torch.from_numpy(df[-14:-4]).to(device) +# pred = model(x.reshape(-1,1,DAYS_FOR_TRAIN)).view(-1).detach().numpy() + + +# 反归一化 +# pred = pred * (max_value - min_value) + min_value +# df = df * (max_value - min_value) + min_value + +# print(pred) +# # 打印指标 +# print(abs(pred - df[-3:]).mean() / df[-3:].mean()) +# result_eight = pd.DataFrame({'pred': np.round(pred,1),'real': df[-3:]}) +# target = (result_eight['pred'].sum() - result_eight['real'].sum()) / df[-31:].sum() +# result_eight['loss_rate'] = round(target, 5) +# result_eight['level'] = level +# list_app.append(result_eight) +# print(target) +# print(result_eight) +# final_df = pd.concat(list_app,ignore_index=True) +# final_df.to_csv('市行业电量.csv',encoding='gbk') +# print(final_df) + + + +