删除重复数据集

main
get 1 year ago
parent 32fca2f218
commit 7ce1a2c9c1

@ -10,19 +10,21 @@ torch.manual_seed(42)
os.environ["KMP_DUPLICATE_LIB_OK"]="TRUE" # 解决OMP: Error #15: Initializing libiomp5md.dll, but found libiomp5md.dll already initialized. os.environ["KMP_DUPLICATE_LIB_OK"]="TRUE" # 解决OMP: Error #15: Initializing libiomp5md.dll, but found libiomp5md.dll already initialized.
pd.set_option('display.width',None) pd.set_option('display.width',None)
class LSTM(nn.Module): class LSTM(nn.Module):
def __init__(self,input_size,hidden_size,output_size,num_layers=2): def __init__(self,input_size,hidden_size,output_size,num_layers=3):
super().__init__() super().__init__()
self.lstm = nn.LSTM(input_size,hidden_size,num_layers) self.lstm = nn.LSTM(input_size,hidden_size,num_layers)
self.fc1 = nn.Linear(hidden_size,output_size) self.fc1 = nn.Linear(hidden_size,64)
# self.ReLu = nn.ReLU() self.fc2 = nn.Linear(64,128)
# self.fc2 = nn.Linear(64,output_size) self.fc3 = nn.Linear(128, output_size)
self.ReLu = nn.ReLU()
self.dropout = nn.Dropout()
def forward(self,x): def forward(self,x):
output,_ = self.lstm(x) output,_ = self.lstm(x)
s,b,h = output.shape s,b,h = output.shape
output = output.reshape(-1,h) output = output.reshape(-1,h)
output = self.fc1(output) output = self.ReLu(self.fc1(output))
# output = self.ReLu(self.fc1(output)) output = self.ReLu(self.fc2(output))
# output = self.fc2(output) output = self.fc3(output)
return output return output
@ -96,6 +98,7 @@ dataset_x = (dataset_x - min_value) / (max_value - min_value)
dataset_y = (dataset_y - min_value) / (max_value - min_value) dataset_y = (dataset_y - min_value) / (max_value - min_value)
print(max_value,min_value) print(max_value,min_value)
print(np.max(dataset_x),np.min(dataset_x),np.max(dataset_y),np.min(dataset_y))
# 划分训练集和测试集 # 划分训练集和测试集
train_size = int(len(dataset_x)*0.8) train_size = int(len(dataset_x)*0.8)
@ -117,12 +120,12 @@ eval_x = torch.from_numpy(eval_x).to(device).type(torch.float32)
eval_y = torch.from_numpy(eval_y).to(device).type(torch.float32) eval_y = torch.from_numpy(eval_y).to(device).type(torch.float32)
train_ds = TensorDataset(train_x,train_y) train_ds = TensorDataset(train_x,train_y)
train_dl = DataLoader(train_ds,batch_size=2,drop_last=True) train_dl = DataLoader(train_ds,batch_size=2,shuffle=True, drop_last=True)
eval_ds = TensorDataset(eval_x,eval_y) eval_ds = TensorDataset(eval_x,eval_y)
eval_dl = DataLoader(eval_ds,batch_size=4,drop_last=True) eval_dl = DataLoader(eval_ds,batch_size=4,drop_last=True)
model = LSTM(27, 16, output_size=3, num_layers=2).to(device) # 导入模型并设置模型的参数输入输出层、隐藏层等 model = LSTM(27, 16, output_size=3, num_layers=3).to(device) # 导入模型并设置模型的参数输入输出层、隐藏层等
train_loss = [] train_loss = []
loss_function = nn.MSELoss() loss_function = nn.MSELoss()
@ -155,11 +158,13 @@ for i in range(200):
best_model_weight = model.state_dict() best_model_weight = model.state_dict()
print(f'epoch {i+1} test_loss:{test_loss}') print(f'epoch {i+1} test_loss:{test_loss}')
total_params = sum(p.numel() for p in model.parameters() if p.requires_grad)
print(f"Total parameters in the LSTM model: {total_params}")
# 保存模型 # 保存模型
torch.save(best_model_weight,'dy3.pth') torch.save(best_model_weight,'dy3.pth')
# 读取模型 # 读取模型
model = LSTM(27, 16, output_size=3, num_layers=2).to(device) model = LSTM(27, 16, output_size=3, num_layers=3).to(device)
model.load_state_dict(torch.load('dy3.pth')) model.load_state_dict(torch.load('dy3.pth'))
# for test # for test

@ -0,0 +1,197 @@
import torch
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from torch import nn
import os
from torch.utils.data import TensorDataset, DataLoader
import datetime
torch.manual_seed(42)
os.environ[
"KMP_DUPLICATE_LIB_OK"] = "TRUE" # 解决OMP: Error #15: Initializing libiomp5md.dll, but found libiomp5md.dll already initialized.
pd.set_option('display.width', None)
class LSTM(nn.Module):
def __init__(self, input_size, hidden_size, output_size, num_layers=3):
super().__init__()
self.lstm = nn.LSTM(input_size, hidden_size, num_layers)
self.fc1 = nn.Linear(hidden_size, 64)
self.fc2 = nn.Linear(64, 128)
self.fc3 = nn.Linear(128, output_size)
self.ReLu = nn.ReLU()
self.dropout = nn.Dropout()
def forward(self, x):
output, _ = self.lstm(x)
s, b, h = output.shape
output = output.reshape(-1, h)
output = self.ReLu(self.fc1(output))
output = self.ReLu(self.fc2(output))
output = self.fc3(output)
return output
def normal(df):
for col in df.columns:
try:
high = df[col].describe()['75%'] + 1.5 * (df[col].describe()['75%'] - df[col].describe()['25%'])
low = df[col].describe()['25%'] - 1.5 * (df[col].describe()['75%'] - df[col].describe()['25%'])
df[col] = df[col].map(lambda x: np.nan if (x >= high) | (x <= low) else x)
df[col] = df[col].fillna(method='ffill')
except:
pass
def create_data(df_industry, industry):
dataset_x = []
dataset_y = []
# 按月份分组
grouped = df_industry.groupby(df_industry['stat_date'].dt.to_period('M'))
# 遍历每个月的数据
for name, group in grouped:
if len(group) == 31:
dataset_x.append(list(group[industry].values[1:28]))
dataset_y.append(list(group[industry].values[-3:]))
if len(group) == 30:
dataset_x.append(list(group[industry].values[:27]))
dataset_y.append(list(group[industry].values[-3:]))
if len(group) == 28:
fst = group[industry].values[0]
dataset_x.append([fst, fst, fst] + list(group[industry].values[1:25]))
dataset_y.append(list(group[industry].values[-3:]))
else:
fst = group[industry].values[0]
if len([fst, fst] + list(group[industry].values[1:26])) != 27:
break
dataset_x.append([fst, fst] + list(group[industry].values[1:26]))
dataset_y.append(list(group[industry].values[-3:]))
return np.array(dataset_x), np.array(dataset_y)
# 创建数据集
file_dir = './浙江各地市行业电量数据'
city1 = os.listdir(file_dir)[0]
df_city = pd.read_excel(os.path.join(file_dir, city1))
df_city = normal(df_city)
df_city = df_city.drop(columns='地市')
df_city[df_city.columns[1:]] /= 10000
df_city['stat_date'] = df_city['stat_date'].map(lambda x: str(x).strip()[:10])
df_city.stat_date = pd.to_datetime(df_city.stat_date)
industry = '全社会用电总计'
df_industry = df_city[['stat_date', industry]]
dataset_x, dataset_y = create_data(df_industry, industry)
for industry in df_city.columns[2:]:
df_level = df_city[['stat_date', industry]]
x, y = create_data(df_level, industry)
dataset_x = np.concatenate([dataset_x, x])
dataset_y = np.concatenate([dataset_y, y])
for excel in os.listdir(file_dir)[1:]:
df_city = pd.read_excel(os.path.join(file_dir, excel)).drop(columns='地市')
df_city[df_city.columns[1:]] /= 10000
df_city['stat_date'] = df_city['stat_date'].map(lambda x: str(x).strip()[:10])
df_city.stat_date = pd.to_datetime(df_city.stat_date)
for industry in df_city.columns[1:]:
df_level = df_city[['stat_date', industry]]
x, y = create_data(df_level, industry)
dataset_x = np.concatenate([dataset_x, x])
dataset_y = np.concatenate([dataset_y, y])
print(dataset_x.shape, dataset_y.shape)
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
# 标准化到0~1
max_value = np.max(dataset_x)
min_value = np.min(dataset_x)
dataset_x = (dataset_x - min_value) / (max_value - min_value)
dataset_y = (dataset_y - min_value) / (max_value - min_value)
print(max_value, min_value)
print(np.max(dataset_x), np.min(dataset_x), np.max(dataset_y), np.min(dataset_y))
# 划分训练集和测试集
train_size = int(len(dataset_x) * 0.8)
train_x = dataset_x[:train_size]
train_y = dataset_y[:train_size]
eval_x = dataset_x[train_size:]
eval_y = dataset_y[train_size:]
# # 将数据改变形状RNN 读入的数据维度是 (seq_size, batch_size, feature_size)
train_x = train_x.reshape(-1, 1, 27)
train_y = train_y.reshape(-1, 1, 3)
eval_x = eval_x.reshape(-1, 1, 27)
eval_y = eval_y.reshape(-1, 1, 3)
# # 转为pytorch的tensor对象
train_x = torch.from_numpy(train_x).to(device).type(torch.float32)
train_y = torch.from_numpy(train_y).to(device).type(torch.float32)
eval_x = torch.from_numpy(eval_x).to(device).type(torch.float32)
eval_y = torch.from_numpy(eval_y).to(device).type(torch.float32)
train_ds = TensorDataset(train_x, train_y)
train_dl = DataLoader(train_ds, batch_size=32, shuffle=True, drop_last=True)
eval_ds = TensorDataset(eval_x, eval_y)
eval_dl = DataLoader(eval_ds, batch_size=64, drop_last=True)
model = LSTM(27, 16, output_size=3, num_layers=3).to(device) # 导入模型并设置模型的参数输入输出层、隐藏层等
train_loss = []
loss_function = nn.MSELoss()
optimizer = torch.optim.Adam(model.parameters(), lr=0.005)
min_loss = 1
for i in range(10):
model.train()
for j, (x, y) in enumerate(train_dl):
x, y = x.to(device), y.to(device)
out = model(x)
loss = loss_function(out, y)
loss.backward()
optimizer.step()
optimizer.zero_grad()
train_loss.append(loss.item())
# if (i+1) % 100 == 0:
# print(f'epoch {i+1}/1500 loss:{round(loss.item(),5)}')
if (j + 1) % 10 == 0:
print(f'epoch {i + 1}/200 step {j + 1}/{len(train_dl)} loss:{loss}')
test_running_loss = 0
model.eval()
with torch.no_grad():
for x, y in eval_dl:
pred = model(eval_x)
loss = loss_function(pred, y)
test_running_loss += loss.item()
test_loss = test_running_loss / len(eval_dl)
if test_loss < min_loss:
min_loss = test_loss
best_model_weight = model.state_dict()
print(f'epoch {i + 1} test_loss:{test_loss}')
total_params = sum(p.numel() for p in model.parameters() if p.requires_grad)
print(f"Total parameters in the LSTM model: {total_params}")
# 保存模型
torch.save(best_model_weight, 'dy3.pth')
# 读取模型
model = LSTM(27, 16, output_size=3, num_layers=3).to(device)
model.load_state_dict(torch.load('dy3.pth'))
# for test
dataset_x = dataset_x.reshape(-1, 1, 27) # (seq_size, batch_size, feature_size)
dataset_x = torch.from_numpy(dataset_x).to(device).type(torch.float32)
pred_test = model(dataset_x) # 全量训练集
# 模型输出 (seq_size, batch_size, output_size)
pred_test = pred_test.view(-1).cpu().detach().numpy()
plt.plot(pred_test.reshape(-1), 'r', label='prediction')
plt.plot(dataset_y.reshape(-1), 'b', label='real')
plt.plot((train_size * 3, train_size * 3), (0, 1), 'g--') # 分割线 左边是训练数据 右边是测试数据的输出
plt.legend(loc='best')
plt.show()
Loading…
Cancel
Save