diff --git a/浙江电压等级电量/电压等级_输出为3.py b/浙江电压等级电量/电压等级_输出为3.py index 7f013db..8b45dc2 100644 --- a/浙江电压等级电量/电压等级_输出为3.py +++ b/浙江电压等级电量/电压等级_输出为3.py @@ -10,19 +10,21 @@ torch.manual_seed(42) os.environ["KMP_DUPLICATE_LIB_OK"]="TRUE" # 解决OMP: Error #15: Initializing libiomp5md.dll, but found libiomp5md.dll already initialized. pd.set_option('display.width',None) class LSTM(nn.Module): - def __init__(self,input_size,hidden_size,output_size,num_layers=2): + def __init__(self,input_size,hidden_size,output_size,num_layers=3): super().__init__() self.lstm = nn.LSTM(input_size,hidden_size,num_layers) - self.fc1 = nn.Linear(hidden_size,output_size) - # self.ReLu = nn.ReLU() - # self.fc2 = nn.Linear(64,output_size) + self.fc1 = nn.Linear(hidden_size,64) + self.fc2 = nn.Linear(64,128) + self.fc3 = nn.Linear(128, output_size) + self.ReLu = nn.ReLU() + self.dropout = nn.Dropout() def forward(self,x): output,_ = self.lstm(x) s,b,h = output.shape output = output.reshape(-1,h) - output = self.fc1(output) - # output = self.ReLu(self.fc1(output)) - # output = self.fc2(output) + output = self.ReLu(self.fc1(output)) + output = self.ReLu(self.fc2(output)) + output = self.fc3(output) return output @@ -96,6 +98,7 @@ dataset_x = (dataset_x - min_value) / (max_value - min_value) dataset_y = (dataset_y - min_value) / (max_value - min_value) print(max_value,min_value) +print(np.max(dataset_x),np.min(dataset_x),np.max(dataset_y),np.min(dataset_y)) # 划分训练集和测试集 train_size = int(len(dataset_x)*0.8) @@ -117,12 +120,12 @@ eval_x = torch.from_numpy(eval_x).to(device).type(torch.float32) eval_y = torch.from_numpy(eval_y).to(device).type(torch.float32) train_ds = TensorDataset(train_x,train_y) -train_dl = DataLoader(train_ds,batch_size=2,drop_last=True) +train_dl = DataLoader(train_ds,batch_size=2,shuffle=True, drop_last=True) eval_ds = TensorDataset(eval_x,eval_y) eval_dl = DataLoader(eval_ds,batch_size=4,drop_last=True) -model = LSTM(27, 16, output_size=3, num_layers=2).to(device) # 导入模型并设置模型的参数输入输出层、隐藏层等 +model = LSTM(27, 16, output_size=3, num_layers=3).to(device) # 导入模型并设置模型的参数输入输出层、隐藏层等 train_loss = [] loss_function = nn.MSELoss() @@ -155,11 +158,13 @@ for i in range(200): best_model_weight = model.state_dict() print(f'epoch {i+1} test_loss:{test_loss}') +total_params = sum(p.numel() for p in model.parameters() if p.requires_grad) +print(f"Total parameters in the LSTM model: {total_params}") # 保存模型 torch.save(best_model_weight,'dy3.pth') # 读取模型 -model = LSTM(27, 16, output_size=3, num_layers=2).to(device) +model = LSTM(27, 16, output_size=3, num_layers=3).to(device) model.load_state_dict(torch.load('dy3.pth')) # for test diff --git a/浙江行业电量/浙江各地市行业电量数据/丽水.xlsx b/浙江行业电量/浙江各地市行业电量数据/丽水.xlsx index 1834166..8fdb402 100644 Binary files a/浙江行业电量/浙江各地市行业电量数据/丽水.xlsx and b/浙江行业电量/浙江各地市行业电量数据/丽水.xlsx differ diff --git a/浙江行业电量/浙江各地市行业电量数据/台州.xlsx b/浙江行业电量/浙江各地市行业电量数据/台州.xlsx index 71f05d8..754086c 100644 Binary files a/浙江行业电量/浙江各地市行业电量数据/台州.xlsx and b/浙江行业电量/浙江各地市行业电量数据/台州.xlsx differ diff --git a/浙江行业电量/浙江各地市行业电量数据/嘉兴.xlsx b/浙江行业电量/浙江各地市行业电量数据/嘉兴.xlsx index 50d9ea1..b52bc0c 100644 Binary files a/浙江行业电量/浙江各地市行业电量数据/嘉兴.xlsx and b/浙江行业电量/浙江各地市行业电量数据/嘉兴.xlsx differ diff --git a/浙江行业电量/浙江各地市行业电量数据/宁波.xlsx b/浙江行业电量/浙江各地市行业电量数据/宁波.xlsx index 9a38dd2..e7b5e4e 100644 Binary files a/浙江行业电量/浙江各地市行业电量数据/宁波.xlsx and b/浙江行业电量/浙江各地市行业电量数据/宁波.xlsx differ diff --git a/浙江行业电量/浙江各地市行业电量数据/杭州.xlsx b/浙江行业电量/浙江各地市行业电量数据/杭州.xlsx index c9e6792..583f974 100644 Binary files a/浙江行业电量/浙江各地市行业电量数据/杭州.xlsx and b/浙江行业电量/浙江各地市行业电量数据/杭州.xlsx differ diff --git a/浙江行业电量/浙江各地市行业电量数据/温州.xlsx b/浙江行业电量/浙江各地市行业电量数据/温州.xlsx index ed1ac87..4ba3820 100644 Binary files a/浙江行业电量/浙江各地市行业电量数据/温州.xlsx and b/浙江行业电量/浙江各地市行业电量数据/温州.xlsx differ diff --git a/浙江行业电量/浙江各地市行业电量数据/湖州.xlsx b/浙江行业电量/浙江各地市行业电量数据/湖州.xlsx index 2d26a62..de4d93d 100644 Binary files a/浙江行业电量/浙江各地市行业电量数据/湖州.xlsx and b/浙江行业电量/浙江各地市行业电量数据/湖州.xlsx differ diff --git a/浙江行业电量/浙江各地市行业电量数据/绍兴.xlsx b/浙江行业电量/浙江各地市行业电量数据/绍兴.xlsx index 9593a4d..a79ba45 100644 Binary files a/浙江行业电量/浙江各地市行业电量数据/绍兴.xlsx and b/浙江行业电量/浙江各地市行业电量数据/绍兴.xlsx differ diff --git a/浙江行业电量/浙江各地市行业电量数据/舟山.xlsx b/浙江行业电量/浙江各地市行业电量数据/舟山.xlsx index e28876c..cdee0d7 100644 Binary files a/浙江行业电量/浙江各地市行业电量数据/舟山.xlsx and b/浙江行业电量/浙江各地市行业电量数据/舟山.xlsx differ diff --git a/浙江行业电量/浙江各地市行业电量数据/衢州.xlsx b/浙江行业电量/浙江各地市行业电量数据/衢州.xlsx index 863b296..965c8e5 100644 Binary files a/浙江行业电量/浙江各地市行业电量数据/衢州.xlsx and b/浙江行业电量/浙江各地市行业电量数据/衢州.xlsx differ diff --git a/浙江行业电量/浙江各地市行业电量数据/金华.xlsx b/浙江行业电量/浙江各地市行业电量数据/金华.xlsx index 0c8f2ef..6f081ae 100644 Binary files a/浙江行业电量/浙江各地市行业电量数据/金华.xlsx and b/浙江行业电量/浙江各地市行业电量数据/金华.xlsx differ diff --git a/浙江行业电量/行业电量_输出为3.py b/浙江行业电量/行业电量_输出为3.py new file mode 100644 index 0000000..ab64e4e --- /dev/null +++ b/浙江行业电量/行业电量_输出为3.py @@ -0,0 +1,197 @@ +import torch +import pandas as pd +import numpy as np +import matplotlib.pyplot as plt +from torch import nn +import os +from torch.utils.data import TensorDataset, DataLoader +import datetime + +torch.manual_seed(42) +os.environ[ + "KMP_DUPLICATE_LIB_OK"] = "TRUE" # 解决OMP: Error #15: Initializing libiomp5md.dll, but found libiomp5md.dll already initialized. +pd.set_option('display.width', None) + + +class LSTM(nn.Module): + def __init__(self, input_size, hidden_size, output_size, num_layers=3): + super().__init__() + self.lstm = nn.LSTM(input_size, hidden_size, num_layers) + self.fc1 = nn.Linear(hidden_size, 64) + self.fc2 = nn.Linear(64, 128) + self.fc3 = nn.Linear(128, output_size) + self.ReLu = nn.ReLU() + self.dropout = nn.Dropout() + + def forward(self, x): + output, _ = self.lstm(x) + s, b, h = output.shape + output = output.reshape(-1, h) + output = self.ReLu(self.fc1(output)) + output = self.ReLu(self.fc2(output)) + output = self.fc3(output) + return output + + +def normal(df): + for col in df.columns: + try: + high = df[col].describe()['75%'] + 1.5 * (df[col].describe()['75%'] - df[col].describe()['25%']) + low = df[col].describe()['25%'] - 1.5 * (df[col].describe()['75%'] - df[col].describe()['25%']) + df[col] = df[col].map(lambda x: np.nan if (x >= high) | (x <= low) else x) + df[col] = df[col].fillna(method='ffill') + except: + pass + + +def create_data(df_industry, industry): + dataset_x = [] + dataset_y = [] + # 按月份分组 + grouped = df_industry.groupby(df_industry['stat_date'].dt.to_period('M')) + + # 遍历每个月的数据 + for name, group in grouped: + if len(group) == 31: + dataset_x.append(list(group[industry].values[1:28])) + dataset_y.append(list(group[industry].values[-3:])) + if len(group) == 30: + dataset_x.append(list(group[industry].values[:27])) + dataset_y.append(list(group[industry].values[-3:])) + if len(group) == 28: + fst = group[industry].values[0] + + dataset_x.append([fst, fst, fst] + list(group[industry].values[1:25])) + dataset_y.append(list(group[industry].values[-3:])) + else: + fst = group[industry].values[0] + if len([fst, fst] + list(group[industry].values[1:26])) != 27: + break + dataset_x.append([fst, fst] + list(group[industry].values[1:26])) + dataset_y.append(list(group[industry].values[-3:])) + + return np.array(dataset_x), np.array(dataset_y) + + +# 创建数据集 +file_dir = './浙江各地市行业电量数据' +city1 = os.listdir(file_dir)[0] +df_city = pd.read_excel(os.path.join(file_dir, city1)) +df_city = normal(df_city) +df_city = df_city.drop(columns='地市') +df_city[df_city.columns[1:]] /= 10000 +df_city['stat_date'] = df_city['stat_date'].map(lambda x: str(x).strip()[:10]) +df_city.stat_date = pd.to_datetime(df_city.stat_date) + +industry = '全社会用电总计' +df_industry = df_city[['stat_date', industry]] +dataset_x, dataset_y = create_data(df_industry, industry) + +for industry in df_city.columns[2:]: + df_level = df_city[['stat_date', industry]] + x, y = create_data(df_level, industry) + dataset_x = np.concatenate([dataset_x, x]) + dataset_y = np.concatenate([dataset_y, y]) + +for excel in os.listdir(file_dir)[1:]: + df_city = pd.read_excel(os.path.join(file_dir, excel)).drop(columns='地市') + df_city[df_city.columns[1:]] /= 10000 + df_city['stat_date'] = df_city['stat_date'].map(lambda x: str(x).strip()[:10]) + df_city.stat_date = pd.to_datetime(df_city.stat_date) + for industry in df_city.columns[1:]: + df_level = df_city[['stat_date', industry]] + x, y = create_data(df_level, industry) + dataset_x = np.concatenate([dataset_x, x]) + dataset_y = np.concatenate([dataset_y, y]) + +print(dataset_x.shape, dataset_y.shape) + +device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') +# 标准化到0~1 +max_value = np.max(dataset_x) +min_value = np.min(dataset_x) +dataset_x = (dataset_x - min_value) / (max_value - min_value) +dataset_y = (dataset_y - min_value) / (max_value - min_value) + +print(max_value, min_value) +print(np.max(dataset_x), np.min(dataset_x), np.max(dataset_y), np.min(dataset_y)) + +# 划分训练集和测试集 +train_size = int(len(dataset_x) * 0.8) +train_x = dataset_x[:train_size] +train_y = dataset_y[:train_size] +eval_x = dataset_x[train_size:] +eval_y = dataset_y[train_size:] + +# # 将数据改变形状,RNN 读入的数据维度是 (seq_size, batch_size, feature_size) +train_x = train_x.reshape(-1, 1, 27) +train_y = train_y.reshape(-1, 1, 3) +eval_x = eval_x.reshape(-1, 1, 27) +eval_y = eval_y.reshape(-1, 1, 3) + +# # 转为pytorch的tensor对象 +train_x = torch.from_numpy(train_x).to(device).type(torch.float32) +train_y = torch.from_numpy(train_y).to(device).type(torch.float32) +eval_x = torch.from_numpy(eval_x).to(device).type(torch.float32) +eval_y = torch.from_numpy(eval_y).to(device).type(torch.float32) + +train_ds = TensorDataset(train_x, train_y) +train_dl = DataLoader(train_ds, batch_size=32, shuffle=True, drop_last=True) +eval_ds = TensorDataset(eval_x, eval_y) +eval_dl = DataLoader(eval_ds, batch_size=64, drop_last=True) + +model = LSTM(27, 16, output_size=3, num_layers=3).to(device) # 导入模型并设置模型的参数输入输出层、隐藏层等 + +train_loss = [] +loss_function = nn.MSELoss() +optimizer = torch.optim.Adam(model.parameters(), lr=0.005) +min_loss = 1 +for i in range(10): + model.train() + for j, (x, y) in enumerate(train_dl): + x, y = x.to(device), y.to(device) + out = model(x) + loss = loss_function(out, y) + loss.backward() + optimizer.step() + optimizer.zero_grad() + train_loss.append(loss.item()) + # if (i+1) % 100 == 0: + # print(f'epoch {i+1}/1500 loss:{round(loss.item(),5)}') + if (j + 1) % 10 == 0: + print(f'epoch {i + 1}/200 step {j + 1}/{len(train_dl)} loss:{loss}') + test_running_loss = 0 + model.eval() + with torch.no_grad(): + for x, y in eval_dl: + pred = model(eval_x) + loss = loss_function(pred, y) + test_running_loss += loss.item() + test_loss = test_running_loss / len(eval_dl) + if test_loss < min_loss: + min_loss = test_loss + best_model_weight = model.state_dict() + print(f'epoch {i + 1} test_loss:{test_loss}') + +total_params = sum(p.numel() for p in model.parameters() if p.requires_grad) +print(f"Total parameters in the LSTM model: {total_params}") +# 保存模型 +torch.save(best_model_weight, 'dy3.pth') + +# 读取模型 +model = LSTM(27, 16, output_size=3, num_layers=3).to(device) +model.load_state_dict(torch.load('dy3.pth')) +# for test + +dataset_x = dataset_x.reshape(-1, 1, 27) # (seq_size, batch_size, feature_size) +dataset_x = torch.from_numpy(dataset_x).to(device).type(torch.float32) + +pred_test = model(dataset_x) # 全量训练集 +# 模型输出 (seq_size, batch_size, output_size) +pred_test = pred_test.view(-1).cpu().detach().numpy() + +plt.plot(pred_test.reshape(-1), 'r', label='prediction') +plt.plot(dataset_y.reshape(-1), 'b', label='real') +plt.plot((train_size * 3, train_size * 3), (0, 1), 'g--') # 分割线 左边是训练数据 右边是测试数据的输出 +plt.legend(loc='best') +plt.show()