输出预测结果

main
鸽子 1 year ago
parent e5ecbf7bb8
commit 71bc236f76

@ -26,8 +26,11 @@ def normal(nd):
parent_dir = os.path.abspath(os.path.join(os.getcwd(), os.pardir)) parent_dir = os.path.abspath(os.path.join(os.getcwd(), os.pardir))
data = pd.read_excel(os.path.join(parent_dir, '入模数据/丽水.xlsx'), index_col='dtdate') data = pd.read_excel(os.path.join(parent_dir, '入模数据/丽水.xlsx'))
data.index = pd.to_datetime(data.index, format='%Y-%m-%d') data['dtdate'] = pd.to_datetime(data['dtdate'],format='%Y-%m-%d')
data['year'] = data['dtdate'].dt.year
# data.index = pd.to_datetime(data.index, format='%Y-%m-%d')
data.set_index('dtdate',inplace=True)
data = data.loc[normal(data['售电量']).index] data = data.loc[normal(data['售电量']).index]
# list2 = [] # list2 = []
@ -51,10 +54,12 @@ df_eval = data.loc['2023-11']
# df_train = data.loc['2021-1':'2023-8'] # df_train = data.loc['2021-1':'2023-8']
df_train = data[450:-1] df_train = data[450:-1]
# df_train = data.loc['2022-4':'2023-9'][:-3] # df_train = data.loc['2022-4':'2023-9'][:-3]
df_train = df_train[['tem_max', 'tem_min', 'holiday', '24ST', '售电量', 'season']] df_train = df_train[['tem_max', 'tem_min', 'holiday', '24ST', '售电量', 'season','year']]
X = df_train[['tem_max', 'tem_min', '24ST', 'holiday', 'season']] print(df_train.corr()['售电量'])
X_eval = df_eval[['tem_max', 'tem_min', '24ST', 'holiday', 'season']]
X = df_train[['tem_max', 'tem_min', '24ST', 'holiday', 'season','year']]
X_eval = df_eval[['tem_max', 'tem_min', '24ST', 'holiday', 'season','year']]
y = df_train['售电量'] y = df_train['售电量']
# best_goal = 1 # best_goal = 1
# best_i = {} # best_i = {}
@ -85,9 +90,9 @@ print(goal2)
import numpy as np import numpy as np
X_eval = np.array([ X_eval = np.array([
[17.2, 5.7, 10, 0, 0], [17.2, 5.7, 10, 0, 0,2023],
[21.2, 4.3, 10, 0, 0], [21.2, 4.3, 10, 0, 0,2023],
[11.5, 6.6, 10, 0, 0] [11.5, 6.6, 10, 0, 0,2023]
]) ])
print(model.predict(X_eval)) print(model.predict(X_eval))
result = model.predict(X_eval) result = model.predict(X_eval)

@ -22,8 +22,11 @@ def normal(nd):
return nd[(nd<high)&(nd>low)] return nd[(nd<high)&(nd>low)]
parent_dir = os.path.abspath(os.path.join(os.getcwd(),os.pardir)) parent_dir = os.path.abspath(os.path.join(os.getcwd(),os.pardir))
data = pd.read_excel(os.path.join(parent_dir,'入模数据/台州.xlsx'),index_col='dtdate') data = pd.read_excel(os.path.join(parent_dir,'入模数据/台州.xlsx'))
data.index = pd.to_datetime(data.index,format='%Y-%m-%d') data['dtdate'] = pd.to_datetime(data['dtdate'],format='%Y-%m-%d')
data['year'] = data['dtdate'].dt.year
# data.index = pd.to_datetime(data.index, format='%Y-%m-%d')
data.set_index('dtdate',inplace=True)
data = data.loc[normal(data['售电量']).index] data = data.loc[normal(data['售电量']).index]
# list2 = [] # list2 = []
@ -47,10 +50,10 @@ df_train = data[500:-1]
# df_train = data[500:][:-3] # df_train = data[500:][:-3]
print(df_train) print(df_train)
df_train = df_train[['tem_max','tem_min','holiday','24ST','售电量','season']] df_train = df_train[['tem_max','tem_min','holiday','24ST','售电量','season','year']]
X = df_train[['tem_max','tem_min','24ST','holiday','season']] X = df_train[['tem_max','tem_min','24ST','holiday','season','year']]
X_eval = df_eval[['tem_max','tem_min','24ST','holiday','season']] X_eval = df_eval[['tem_max','tem_min','24ST','holiday','season','year']]
y = df_train['售电量'] y = df_train['售电量']
# best_goal = 1 # best_goal = 1
# best_i = {} # best_i = {}
@ -85,9 +88,9 @@ model.save_model('taizhou.bin')
import numpy as np import numpy as np
X_eval = np.array([ X_eval = np.array([
[18.8, 6.2, 10, 0, 0], [18.8, 6.2, 10, 0, 0,2023],
[21.7, 6.5, 10, 0, 0], [21.7, 6.5, 10, 0, 0,2023],
[14.3, 8.4, 10, 0, 0] [14.3, 8.4, 10, 0, 0,2023]
]) ])
print(model.predict(X_eval)) print(model.predict(X_eval))
result = model.predict(X_eval) result = model.predict(X_eval)

@ -26,8 +26,11 @@ def normal(nd):
parent_dir = os.path.abspath(os.path.join(os.getcwd(), os.pardir)) parent_dir = os.path.abspath(os.path.join(os.getcwd(), os.pardir))
data = pd.read_excel(os.path.join(parent_dir, '入模数据/嘉兴.xlsx'), index_col='dtdate') data = pd.read_excel(os.path.join(parent_dir, '入模数据/嘉兴.xlsx'))
data.index = pd.to_datetime(data.index, format='%Y-%m-%d') data['dtdate'] = pd.to_datetime(data['dtdate'],format='%Y-%m-%d')
data['year'] = data['dtdate'].dt.year
# data.index = pd.to_datetime(data.index, format='%Y-%m-%d')
data.set_index('dtdate',inplace=True)
data = data.loc[normal(data['售电量']).index] data = data.loc[normal(data['售电量']).index]
# list2 = [] # list2 = []
@ -47,12 +50,13 @@ data['season'] = data.index.map(season)
df_eval = data.loc['2023-11'] df_eval = data.loc['2023-11']
df_train = data.iloc[450:-1] df_train = data.iloc[450:-1]
# df_train = data[450:][:-3] # df_train = data[450:][:-3]
print(df_train) print(df_train)
df_train = df_train[['tem_max', 'tem_min', 'holiday', '24ST', '售电量', 'season']] df_train = df_train[['tem_max', 'tem_min', 'holiday', '24ST', '售电量', 'season','year']]
X = df_train[['tem_max', 'tem_min', '24ST', 'holiday', 'season']] X = df_train[['tem_max', 'tem_min', '24ST', 'holiday', 'season','year']]
X_eval = df_eval[['tem_max', 'tem_min', '24ST', 'holiday', 'season']] X_eval = df_eval[['tem_max', 'tem_min', '24ST', 'holiday', 'season','year']]
y = df_train['售电量'] y = df_train['售电量']
# best_goal = 1 # best_goal = 1
@ -89,9 +93,9 @@ loaded_model.load_model('jiaxing.bin')
import numpy as np import numpy as np
X_eval = np.array([ X_eval = np.array([
[14.5, 7.7, 10, 0, 1], [14.5, 7.7, 10, 0, 1,2023],
[18.2, 7.8, 10, 0, 1], [21.6, 10, 10, 0, 1,2023],
[11.9, 6.6, 10, 0, 1] [11.9, 6.6, 10, 0, 1,2023]
]) ])
print(model.predict(X_eval)) print(model.predict(X_eval))
result = model.predict(X_eval) result = model.predict(X_eval)

@ -26,8 +26,11 @@ def normal(nd):
parent_dir = os.path.abspath(os.path.join(os.getcwd(), os.pardir)) parent_dir = os.path.abspath(os.path.join(os.getcwd(), os.pardir))
data = pd.read_excel(os.path.join(parent_dir, '入模数据/宁波.xlsx'), index_col='dtdate') data = pd.read_excel(os.path.join(parent_dir, '入模数据/宁波.xlsx'))
data.index = pd.to_datetime(data.index, format='%Y-%m-%d') data['dtdate'] = pd.to_datetime(data['dtdate'],format='%Y-%m-%d')
data['year'] = data['dtdate'].dt.year
# data.index = pd.to_datetime(data.index, format='%Y-%m-%d')
data.set_index('dtdate',inplace=True)
data = data.loc[normal(data['售电量']).index] data = data.loc[normal(data['售电量']).index]
# list2 = [] # list2 = []
@ -50,10 +53,10 @@ df_eval = data.loc['2023-11']
df_train = data.loc['2022-01':'2023-11'] df_train = data.loc['2022-01':'2023-11']
df_train = df_train[['tem_max', 'tem_min', 'holiday', '24ST', '售电量', 'season']] df_train = df_train[['tem_max', 'tem_min', 'holiday', '24ST', '售电量', 'season','year']]
X = df_train[['tem_max', 'tem_min', '24ST', 'holiday', 'season']] X = df_train[['tem_max', 'tem_min', '24ST', 'holiday', 'season','year']]
X_eval = df_eval[['tem_max', 'tem_min', '24ST', 'holiday', 'season']] X_eval = df_eval[['tem_max', 'tem_min', '24ST', 'holiday', 'season','year']]
y = df_train['售电量'] y = df_train['售电量']
# best_goal = 1 # best_goal = 1
@ -86,9 +89,9 @@ import numpy as np
X_eval = np.array([ X_eval = np.array([
[16.5, 6.8, 10, 0, 1], [16.5, 6.8, 10, 0, 1,2023],
[21.7, 6.8, 10, 0, 1], [21.7, 6.8, 10, 0, 1,2023],
[13, 8.8, 10, 0, 1] [13, 8.8, 10, 0, 1,2023]
]) ])
print(model.predict(X_eval)) print(model.predict(X_eval))
result = model.predict(X_eval) result = model.predict(X_eval)

@ -34,8 +34,11 @@ def normal(nd):
parent_dir = os.path.abspath(os.path.join(os.getcwd(), os.pardir)) parent_dir = os.path.abspath(os.path.join(os.getcwd(), os.pardir))
data = pd.read_excel(os.path.join(parent_dir, '入模数据/杭州.xlsx'), index_col='dtdate') data = pd.read_excel(os.path.join(parent_dir, '入模数据/杭州.xlsx'))
data.index = pd.to_datetime(data.index, format='%Y-%m-%d') data['dtdate'] = pd.to_datetime(data['dtdate'],format='%Y-%m-%d')
data['year'] = data['dtdate'].dt.year
# data.index = pd.to_datetime(data.index, format='%Y-%m-%d')
data.set_index('dtdate',inplace=True)
data = data.loc[normal(data['售电量']).index] data = data.loc[normal(data['售电量']).index]
# list2 = [] # list2 = []
@ -61,8 +64,8 @@ df_train = data[500:-1]
df_eval = data.loc['2023-11'] df_eval = data.loc['2023-11']
print(df_train) print(df_train)
X = df_train[['tem_max', 'tem_min', '24ST', 'holiday', 'season']] X = df_train[['tem_max', 'tem_min', '24ST', 'holiday', 'season','year']]
X_eval = df_eval[['tem_max', 'tem_min', '24ST', 'holiday', 'season']] X_eval = df_eval[['tem_max', 'tem_min', '24ST', 'holiday', 'season','year']]
y = df_train['售电量'] y = df_train['售电量']
# best_goal = 1 # best_goal = 1
@ -115,9 +118,9 @@ model.save_model('hangzhou.bin')
loaded_model = xgb.XGBRegressor() loaded_model = xgb.XGBRegressor()
loaded_model.load_model('hangzhou.bin') loaded_model.load_model('hangzhou.bin')
X_eval = np.array([ X_eval = np.array([
[17.2, 5.7, 10, 0, 0], [17.2, 5.7, 10, 0, 0,2023],
[21.2, 4.3, 10, 0, 0], [21.2, 4.3, 10, 0, 0,2023],
[11.5, 6.6, 10, 0, 0] [11.5, 6.6, 10, 0, 0,2023]
]) ])
print(model.predict(X_eval)) print(model.predict(X_eval))
result = model.predict(X_eval) result = model.predict(X_eval)

@ -26,8 +26,11 @@ def normal(nd):
parent_dir = os.path.abspath(os.path.join(os.getcwd(), os.pardir)) parent_dir = os.path.abspath(os.path.join(os.getcwd(), os.pardir))
data = pd.read_excel(os.path.join(parent_dir, '入模数据/温州.xlsx'), index_col='dtdate') data = pd.read_excel(os.path.join(parent_dir, '入模数据/温州.xlsx'))
data.index = pd.to_datetime(data.index, format='%Y-%m-%d') data['dtdate'] = pd.to_datetime(data['dtdate'],format='%Y-%m-%d')
data['year'] = data['dtdate'].dt.year
# data.index = pd.to_datetime(data.index, format='%Y-%m-%d')
data.set_index('dtdate',inplace=True)
data = data.loc[normal(data['售电量']).index] data = data.loc[normal(data['售电量']).index]
# list2 = [] # list2 = []
@ -52,10 +55,10 @@ df_train = data[450:]
# df_train = data[450:][:-3] # df_train = data[450:][:-3]
print(df_train) print(df_train)
df_train = df_train[['tem_max', 'tem_min', 'holiday', '24ST', '售电量', 'season']] df_train = df_train[['tem_max', 'tem_min', 'holiday', '24ST', '售电量', 'season','year']]
X = df_train[['tem_max', 'tem_min', '24ST', 'holiday', 'season']] X = df_train[['tem_max', 'tem_min', '24ST', 'holiday', 'season','year']]
X_eval = df_eval[['tem_max', 'tem_min', '24ST', 'holiday', 'season']] X_eval = df_eval[['tem_max', 'tem_min', '24ST', 'holiday', 'season','year']]
y = df_train['售电量'] y = df_train['售电量']
# best_goal = 1 # best_goal = 1
@ -95,9 +98,9 @@ loaded_model.load_model('wenzhou.bin')
import numpy as np import numpy as np
X_eval = np.array([ X_eval = np.array([
[19.8, 6.6, 10, 0, 1], [19.8, 6.6, 10, 0, 1,2023],
[22, 6.1, 10, 0, 1], [22, 6.1, 10, 0, 1,2023],
[18.5, 10.1, 10, 0, 1] [18.5, 10.1, 10, 0, 1,2023]
]) ])
print(model.predict(X_eval)) print(model.predict(X_eval))
result = model.predict(X_eval) result = model.predict(X_eval)

@ -27,8 +27,11 @@ def normal(nd):
parent_dir = os.path.abspath(os.path.join(os.getcwd(), os.pardir)) parent_dir = os.path.abspath(os.path.join(os.getcwd(), os.pardir))
data = pd.read_excel(os.path.join(parent_dir, '入模数据/湖州.xlsx'), index_col='dtdate') data = pd.read_excel(os.path.join(parent_dir, '入模数据/湖州.xlsx'))
data.index = pd.to_datetime(data.index, format='%Y-%m-%d') data['dtdate'] = pd.to_datetime(data['dtdate'],format='%Y-%m-%d')
data['year'] = data['dtdate'].dt.year
# data.index = pd.to_datetime(data.index, format='%Y-%m-%d')
data.set_index('dtdate',inplace=True)
data = data.loc[normal(data['售电量']).index] data = data.loc[normal(data['售电量']).index]
# list2 = [] # list2 = []
@ -52,10 +55,10 @@ df_eval = data.loc['2023-11']
df_train = data[450:-1] df_train = data[450:-1]
# df_train = data[450:][:-3] # df_train = data[450:][:-3]
print(df_train) print(df_train)
df_train = df_train[['tem_max', 'tem_min', 'holiday', '24ST', '售电量', 'season']] df_train = df_train[['tem_max', 'tem_min', 'holiday', '24ST', '售电量', 'season','year']]
X = df_train[['tem_max', 'tem_min', '24ST', 'holiday', 'season']] X = df_train[['tem_max', 'tem_min', '24ST', 'holiday', 'season','year']]
X_eval = df_eval[['tem_max', 'tem_min', '24ST', 'holiday', 'season']] X_eval = df_eval[['tem_max', 'tem_min', '24ST', 'holiday', 'season','year']]
y = df_train['售电量'] y = df_train['售电量']
x_train, x_test, y_train, y_test = train_test_split(X, y, test_size=0.1, random_state=158) x_train, x_test, y_train, y_test = train_test_split(X, y, test_size=0.1, random_state=158)
@ -84,9 +87,9 @@ import numpy as np
X_eval = np.array([ X_eval = np.array([
[14.9, 7.1, 10, 0, 1], [14.9, 7.1, 10, 0, 1,2023],
[17.7, 6.6, 10, 0, 1], [17.7, 6.6, 10, 0, 1,2023],
[10.3, 5.8, 10, 0, 1] [10.3, 5.8, 10, 0, 1,2023]
]) ])
print(model.predict(X_eval)) print(model.predict(X_eval))
result = model.predict(X_eval) result = model.predict(X_eval)

@ -26,8 +26,11 @@ def normal(nd):
parent_dir = os.path.abspath(os.path.join(os.getcwd(), os.pardir)) parent_dir = os.path.abspath(os.path.join(os.getcwd(), os.pardir))
data = pd.read_excel(os.path.join(parent_dir, '入模数据/绍兴.xlsx'), index_col='dtdate') data = pd.read_excel(os.path.join(parent_dir, '入模数据/绍兴.xlsx'))
data.index = pd.to_datetime(data.index, format='%Y-%m-%d') data['dtdate'] = pd.to_datetime(data['dtdate'],format='%Y-%m-%d')
data['year'] = data['dtdate'].dt.year
# data.index = pd.to_datetime(data.index, format='%Y-%m-%d')
data.set_index('dtdate',inplace=True)
data = data.loc[normal(data['售电量']).index] data = data.loc[normal(data['售电量']).index]
# list2 = [] # list2 = []
@ -51,10 +54,10 @@ df_train = data[450:]
# df_train = data[450:][:-3] # df_train = data[450:][:-3]
print(df_train) print(df_train)
df_train = df_train[['tem_max', 'tem_min', 'holiday', '24ST', '售电量', 'season']] df_train = df_train[['tem_max', 'tem_min', 'holiday', '24ST', '售电量', 'season','year']]
X = df_train[['tem_max', 'tem_min', '24ST', 'holiday', 'season']] X = df_train[['tem_max', 'tem_min', '24ST', 'holiday', 'season','year']]
X_eval = df_eval[['tem_max', 'tem_min', '24ST', 'holiday', 'season']] X_eval = df_eval[['tem_max', 'tem_min', '24ST', 'holiday', 'season','year']]
y = df_train['售电量'] y = df_train['售电量']
x_train, x_test, y_train, y_test = train_test_split(X, y, test_size=0.1, random_state=42) x_train, x_test, y_train, y_test = train_test_split(X, y, test_size=0.1, random_state=42)
@ -84,9 +87,9 @@ print(result_eval)
import numpy as np import numpy as np
X_eval = np.array([ X_eval = np.array([
[17.4, 6.6, 10, 0, 0], [17.4, 6.6, 10, 0, 0,2023],
[21.2, 7, 10, 0, 0], [21.2, 7, 10, 0, 0,2023],
[12.1, 7.3, 10, 0, 0] [12.1, 7.3, 10, 0, 0,2023]
]) ])
print(model.predict(X_eval)) print(model.predict(X_eval))
result = model.predict(X_eval) result = model.predict(X_eval)

@ -25,10 +25,11 @@ def normal(nd):
parent_dir = os.path.abspath(os.path.join(os.getcwd(), os.pardir)) parent_dir = os.path.abspath(os.path.join(os.getcwd(), os.pardir))
data = pd.read_excel(os.path.join(parent_dir, '入模数据/舟山.xlsx'), index_col='dtdate') data = pd.read_excel(os.path.join(parent_dir, '入模数据/舟山.xlsx'))
data.index = pd.to_datetime(data.index, format='%Y-%m-%d') data['dtdate'] = pd.to_datetime(data['dtdate'],format='%Y-%m-%d')
data['year'] = data['dtdate'].dt.year
data.set_index('dtdate',inplace=True)
data = data.loc[normal(data['售电量']).index] data = data.loc[normal(data['售电量']).index]
# list2 = [] # list2 = []
# list0 = [] # list0 = []
# list1 = [] # list1 = []
@ -49,9 +50,9 @@ df_eval = data.loc['2023-11']
df_train = data.iloc[450:] df_train = data.iloc[450:]
# df_train = data.iloc[450:][:-3] # df_train = data.iloc[450:][:-3]
df_train = df_train[['tem_max', 'tem_min', 'holiday', '24ST', '售电量', 'season']] df_train = df_train[['tem_max', 'tem_min', 'holiday', '24ST', '售电量', 'season','year']]
X = df_train[['tem_max', 'tem_min', '24ST', 'holiday', 'season']] X = df_train[['tem_max', 'tem_min', '24ST', 'holiday', 'season','year']]
X_eval = df_eval[['tem_max', 'tem_min', '24ST', 'holiday', 'season']] X_eval = df_eval[['tem_max', 'tem_min', '24ST', 'holiday', 'season','year']]
y = df_train['售电量'] y = df_train['售电量']
x_train, x_test, y_train, y_test = train_test_split(X, y, test_size=0.1, random_state=42) x_train, x_test, y_train, y_test = train_test_split(X, y, test_size=0.1, random_state=42)
@ -80,9 +81,9 @@ loaded_model.load_model('zhoushan.bin')
import numpy as np import numpy as np
X_eval = np.array([ X_eval = np.array([
[14.7, 11.4, 10, 0, 1], [14.7, 11.4, 10, 0, 1,2023],
[19.4, 11.8, 10, 0, 1], [19.4, 11.8, 10, 0, 1,2023],
[14.9, 9.4, 10, 0, 1] [14.9, 9.4, 10, 0, 1,2023]
]) ])
print(model.predict(X_eval)) print(model.predict(X_eval))
result = model.predict(X_eval) result = model.predict(X_eval)

@ -21,8 +21,11 @@ def normal(nd):
return nd[(nd<high)&(nd>low)] return nd[(nd<high)&(nd>low)]
parent_dir = os.path.abspath(os.path.join(os.getcwd(),os.pardir)) parent_dir = os.path.abspath(os.path.join(os.getcwd(),os.pardir))
data = pd.read_excel(os.path.join(parent_dir,'入模数据/衢州.xlsx'),index_col='dtdate') data = pd.read_excel(os.path.join(parent_dir,'入模数据/衢州.xlsx'))
data.index = pd.to_datetime(data.index,format='%Y-%m-%d') data['dtdate'] = pd.to_datetime(data['dtdate'],format='%Y-%m-%d')
data['year'] = data['dtdate'].dt.year
data.set_index('dtdate',inplace=True)
data = data.loc[normal(data['售电量']).index] data = data.loc[normal(data['售电量']).index]
# list2 = [] # list2 = []
@ -46,10 +49,10 @@ df_train = data.iloc[450:]
# df_train = data.iloc[450:-3] # df_train = data.iloc[450:-3]
df_train = df_train[['tem_max','tem_min','holiday','24ST','售电量','season']] df_train = df_train[['tem_max','tem_min','holiday','24ST','售电量','season','year']]
X = df_train[['tem_max','tem_min','24ST','holiday','season']] X = df_train[['tem_max','tem_min','24ST','holiday','season','year']]
X_eval = df_eval[['tem_max','tem_min','24ST','holiday','season']] X_eval = df_eval[['tem_max','tem_min','24ST','holiday','season','year']]
y = df_train['售电量'] y = df_train['售电量']
x_train,x_test,y_train,y_test = train_test_split(X,y,test_size=0.2,random_state=42) x_train,x_test,y_train,y_test = train_test_split(X,y,test_size=0.2,random_state=42)
@ -74,9 +77,9 @@ loaded_model = xgb.XGBRegressor()
loaded_model.load_model('quzhou.bin') loaded_model.load_model('quzhou.bin')
import numpy as np import numpy as np
X_eval = np.array([ X_eval = np.array([
[18.7, 7, 10, 0, 1], [18.7, 7, 10, 0, 1,2023],
[20.2, 6.5, 10, 0, 1], [20.2, 6.5, 10, 0, 1,2023],
[11.2, 8, 10, 0, 1] [11.2, 8, 10, 0, 1,2023]
]) ])
print(model.predict(X_eval)) print(model.predict(X_eval))
result = model.predict(X_eval) result = model.predict(X_eval)

@ -89,22 +89,113 @@ file_dir = r'C:\Users\鸽子\Desktop\11月区县分压预测'
# if_sheet_exists='replace') as writer: # if_sheet_exists='replace') as writer:
# df_result.to_excel(writer, sheet_name=f'{sheet}') # df_result.to_excel(writer, sheet_name=f'{sheet}')
df = pd.read_excel('C:\python-project\p1031\浙江行业电量\浙江各地市行业电量数据\台州.xlsx').set_index('stat_date') # df = pd.read_excel('C:\python-project\p1031\浙江行业电量\浙江各地市行业电量数据\台州.xlsx').set_index('stat_date')
print(df.columns) # print(df.columns)
import matplotlib.pyplot as plt import matplotlib.pyplot as plt
import matplotlib as mpl import matplotlib as mpl
import matplotlib.dates as mdates import matplotlib.dates as mdates
date_rng = pd.date_range(start=df['4.有色金属矿采选业'].index[0], end=df['4.有色金属矿采选业'].index[-1], freq='D') # date_rng = pd.date_range(start=df['4.有色金属矿采选业'].index[0], end=df['4.有色金属矿采选业'].index[-1], freq='D')
mpl.rcParams['font.sans-serif']=['kaiti'] # mpl.rcParams['font.sans-serif']=['kaiti']
print(df['4.有色金属矿采选业'][:-1]) # print(df['4.有色金属矿采选业'][:-1])
plt.figure(figsize=(10, 6)) # plt.figure(figsize=(10, 6))
plt.plot(df['4.有色金属矿采选业'].index[:-1],df['4.有色金属矿采选业'][:-1]) # plt.plot(df['4.有色金属矿采选业'].index[:-1],df['4.有色金属矿采选业'][:-1])
#
# plt.title(f'4.有色金属矿采选业')
# plt.gcf().autofmt_xdate()
# plt.gca().xaxis.set_major_locator(mdates.DayLocator(interval=120))
#
# plt.xticks(rotation=45)
# plt.xlabel('时间')
# plt.ylabel('数值')
# plt.show()
excel_file = pd.ExcelFile(r'C:\Users\鸽子\Desktop\浙江电量20231202.xlsx')
df_city_real = pd.read_excel(excel_file,sheet_name=0)
df_city_real = df_city_real[df_city_real['county_name'].isnull()]
df_city_real['city_name'] = df_city_real['city_name'].str[4:6]
# print(df_city_real)
file_dir = r'C:\Users\鸽子\Desktop\发行&预测\区域行业分压预测v1129'
print(os.listdir(file_dir))
# 区域明细及偏差率统计
city_area_file = pd.ExcelFile(os.path.join(file_dir,os.listdir(file_dir)[2]))
# for city in df_city_real['city_name'].drop_duplicates():
# df_city_pred = pd.read_excel(city_area_file,sheet_name=city).dropna().set_index('日期')
# df_city_pred.index = pd.to_datetime(df_city_pred.index)
# df_real = df_city_real[df_city_real['city_name']==city].set_index('pt_date')['power_sal']
# df_real.index = pd.to_datetime(df_real.index)
# df_city_pred.loc['2023-11-27'] = df_real.loc['2023-11-27']
#
# result = pd.DataFrame(df_real).join(df_city_pred)
# result.columns = ['实际值','预测值']
# result['偏差率'] = (result['实际值'] - result['预测值'])/result['实际值']
# result['指标'] = (df_real.values.sum()-df_city_pred.values.sum())/df_real.values.sum()
# result['偏差率'][:27] = 0
# print(result)
# with pd.ExcelWriter(r'C:\Users\鸽子\Desktop\区域电量同期预测对比.xlsx',mode='a',if_sheet_exists='replace',engine='openpyxl') as writer:
# result.to_excel(writer,sheet_name=f'{city}')
# pd.read_excel(city_area_file,sheet_name='舟山').dropna().set_index('日期')
# df_city_real[df_city_real['city_name']=='舟山'].set_index('pt_date')['power_sal']
city_volt_file = os.path.join(file_dir,os.listdir(file_dir)[2])
excel_file1 = pd.ExcelFile(city_volt_file)
plt.title(f'4.有色金属矿采选业') # for sheet_name in excel_file1.sheet_names[1:]:
plt.gcf().autofmt_xdate() # print(sheet_name)
plt.gca().xaxis.set_major_locator(mdates.DayLocator(interval=120)) # pred_volt_df = pd.read_excel(excel_file1,sheet_name=sheet_name).dropna()
#
# pred_volt_df.set_index(pred_volt_df.columns[0],inplace=True)
# real_volt_df = pd.read_excel(excel_file,sheet_name=1).set_index('pt_date')
#
# real_volt_df = real_volt_df[(real_volt_df['county_name'].isnull())&(real_volt_df['city_name'].str[4:6]==sheet_name)].drop(columns=['county_name','500kv(含330kv)以上'])
#
# result = pd.DataFrame({'实际值':list(real_volt_df.sum()[1:]),
# '预测值':list(pred_volt_df.sum()[1:]),
# '偏差':list(real_volt_df.sum()[1:] - pred_volt_df.sum()[1:])},index=real_volt_df.sum()[1:].index)
# result['指标'] = result['偏差']/real_volt_df.sum()[1:]
#
#
# with pd.ExcelWriter(r'C:\Users\鸽子\Desktop\市分压电量同期预测对比.xlsx',mode='a',if_sheet_exists='replace',engine='openpyxl') as wirter:
# result.to_excel(wirter,sheet_name=f'{sheet_name}')
industry_file = pd.ExcelFile(os.path.join(file_dir,os.listdir(file_dir)[4]))
# for sheet_name in industry_file.sheet_names[1:]:
#
# pred_industry_df = pd.concat([pd.read_excel(industry_file,sheet_name=sheet_name).iloc[:27],pd.read_excel(industry_file,sheet_name=sheet_name).iloc[-3:]],ignore_index=True)
# pred_industry_df[pred_industry_df.columns[0]] = pd.date_range(start=f'2023-11-01', end=f'2023-11-30', freq='D').strftime('%Y-%m-%d')
# pred_industry_df.set_index(pred_industry_df.columns[0],inplace=True)
#
# real_industry_df = pd.read_excel(excel_file,sheet_name=2).set_index('stat_date')
# real_industry_df['city_name'] = real_industry_df['city_name'].str[4:6]
# real_industry_df = real_industry_df[real_industry_df['city_name']==sheet_name[:2]].drop(columns=['city_name']).iloc[:30]
# print(sheet_name[:2])
# print(pd.DataFrame(real_industry_df.sum(),columns=['真实值']))
#
#
# result = pd.DataFrame(real_industry_df.sum(),columns=['真实值']).join(pd.DataFrame(pred_industry_df.sum(),columns=['预测值']))
# print(result)
# result['偏差'] = result['真实值'] - result['预测值']
# result['指标'] = result['偏差']/result['真实值']
#
# with pd.ExcelWriter(r'C:\Users\鸽子\Desktop\行业电量同期预测对比.xlsx',mode='a',if_sheet_exists='replace',engine='openpyxl') as wirter:
# result.to_excel(wirter,sheet_name=f'{sheet_name[:2]}')
plt.xticks(rotation=45) e1 = r'C:\Users\鸽子\Desktop\行业电量同期预测对比.xlsx'
plt.xlabel('时间') df1 = pd.read_excel(e1,sheet_name=1)
plt.ylabel('数值') df1.set_index(df1.columns[0],inplace=True)
plt.show() for sheet_name in industry_file.sheet_names[2:]:
df2 = pd.read_excel(e1,sheet_name=sheet_name)
df2 = df2.set_index(df2.columns[0])
df1 += df2
df1['偏差'] = df1['真实值']-df1['预测值']
df1['偏差率'] = df1['偏差']/df1['真实值']
df1.to_excel(r'C:\Users\鸽子\Desktop\1.xlsx')
# writer = pd.ExcelWriter(e1,engine='openpyxl')
# df1.to_excel(writer,sheet_name=0)
print(df1)

@ -0,0 +1,61 @@
from prophet import Prophet
import pandas as pd
import os
import numpy as np
def normal(data):
high = data.describe()['75%'] + 1.5 * (data.describe()['75%'] - data.describe()['25%'])
low = data.describe()['25%'] - 1.5 * (data.describe()['75%'] - data.describe()['25%'])
return (data<=high)&(data>=low)
file_dir = 'C:\python-project\p1031\浙江电压等级电量\浙江各地市分电压日电量数据'
for city in os.listdir(file_dir):
df_city = pd.read_excel(os.path.join(file_dir, city))
# df_city['stat_date'] = df_city['stat_date'].map(lambda x: str(x).strip()[:10])
df_city['stat_date'] = pd.to_datetime(df_city['stat_date'])
list_goal = []
list_industry = []
result_dict = {}
for level in df_city.columns[2:]:
s1 = df_city[['stat_date', level]]
ds_train = s1[(s1['stat_date'] >= '2022-09-30') & (s1['stat_date'] <= '2023-11-27')].sort_values(by='stat_date')
ds_train.rename(columns={'stat_date': 'ds', level: 'y'}, inplace=True)
df_train = ds_train.copy()
df_train['y'] = df_train['y'].where(normal(df_train['y']), other=np.nan).fillna(method='ffill')
model = Prophet(yearly_seasonality=True, weekly_seasonality=True, daily_seasonality=True)
model.add_country_holidays(country_name="CN")
model.fit(df_train)
future = model.make_future_dataframe(periods=3, freq='D')
predict = model.predict(future)
print(city[1:3],level)
predict = predict[['ds', 'yhat']].set_index('ds').loc['2023-11'].rename(columns={'yhat':'售电量'})
ds_train.rename(columns={'y':'售电量'},inplace=True)
result = pd.concat((ds_train.set_index('ds').loc['2023-11'][:27],predict[-3:]))
result_dict[level] = list(result['售电量'])
with pd.ExcelWriter(r'C:\Users\鸽子\Desktop\分压电量预测v1213.xlsx',mode='a',if_sheet_exists='replace',engine='openpyxl') as writer:
pd.DataFrame(result_dict,index=pd.date_range(start=f'2023-11-01', end=f'2023-11-30', freq='D').strftime('%Y-%m-%d')).to_excel(writer,sheet_name=city[1:3])
# df = predict.join(s1.set_index('ds')).loc['2023-8']
# df['偏差率'] = (df['y'] - df['yhat']) / df['y']
# df['goal'] = (df['y'] - df['yhat'])[-3:].sum() / df['y'].sum()
# list_goal.append((df['y'] - df['yhat'])[-3:].sum() / df['y'].sum())
# list_industry.append(industry)
# df = pd.DataFrame({'industry': list_industry, 'goal': list_goal})
# df.to_csv(fr'C:\Users\鸽子\Desktop\行业8月偏差\{city[:2]}_goal.csv', index=False, encoding='gbk')
#
# with open(r'C:\Users\鸽子\Desktop\goal_8.txt','a') as f:
# f.write(f'{city[:2]}\n')
# df['goal'].value_counts(bins=[-np.inf,-0.05, -0.01, -0.005, 0, 0.005, 0.01, 0.02, 0.05,np.inf], sort=False).to_csv(f,header=False,sep='\t')

@ -0,0 +1,61 @@
from prophet import Prophet
import pandas as pd
import os
import numpy as np
def normal(data):
high = data.describe()['75%'] + 1.5 * (data.describe()['75%'] - data.describe()['25%'])
low = data.describe()['25%'] - 1.5 * (data.describe()['75%'] - data.describe()['25%'])
return (data<=high)&(data>=low)
file_dir = 'C:\python-project\p1031\浙江电压等级电量\浙江各地市分电压日电量数据'
for city in os.listdir(file_dir):
df_city = pd.read_excel(os.path.join(file_dir, city))
# df_city['stat_date'] = df_city['stat_date'].map(lambda x: str(x).strip()[:10])
df_city['stat_date'] = pd.to_datetime(df_city['stat_date'])
list_goal = []
list_industry = []
result_dict = {}
for level in df_city.columns[2:]:
s1 = df_city[['stat_date', level]]
ds_train = s1[(s1['stat_date'] >= '2022-09-30') & (s1['stat_date'] <= '2023-11-27')].sort_values(by='stat_date')
ds_train.rename(columns={'stat_date': 'ds', level: 'y'}, inplace=True)
df_train = ds_train.copy()
df_train['y'] = df_train['y'].where(normal(df_train['y']), other=np.nan).fillna(method='ffill')
model = Prophet(yearly_seasonality=True, weekly_seasonality=True, daily_seasonality=True)
model.add_country_holidays(country_name="CN")
model.fit(df_train)
future = model.make_future_dataframe(periods=3, freq='D')
predict = model.predict(future)
print(city[1:3],level)
predict = predict[['ds', 'yhat']].set_index('ds').loc['2023-11'].rename(columns={'yhat':'售电量'})
ds_train.rename(columns={'y':'售电量'},inplace=True)
result = pd.concat((ds_train.set_index('ds').loc['2023-11'][:27],predict[-3:]))
result_dict[level] = list(result['售电量'])
with pd.ExcelWriter(r'C:\Users\鸽子\Desktop\分压电量预测v1213.xlsx',mode='a',if_sheet_exists='replace',engine='openpyxl') as writer:
pd.DataFrame(result_dict,index=pd.date_range(start=f'2023-11-01', end=f'2023-11-30', freq='D').strftime('%Y-%m-%d')).to_excel(writer,sheet_name=city[1:3])
# df = predict.join(s1.set_index('ds')).loc['2023-8']
# df['偏差率'] = (df['y'] - df['yhat']) / df['y']
# df['goal'] = (df['y'] - df['yhat'])[-3:].sum() / df['y'].sum()
# list_goal.append((df['y'] - df['yhat'])[-3:].sum() / df['y'].sum())
# list_industry.append(industry)
# df = pd.DataFrame({'industry': list_industry, 'goal': list_goal})
# df.to_csv(fr'C:\Users\鸽子\Desktop\行业8月偏差\{city[:2]}_goal.csv', index=False, encoding='gbk')
#
# with open(r'C:\Users\鸽子\Desktop\goal_8.txt','a') as f:
# f.write(f'{city[:2]}\n')
# df['goal'].value_counts(bins=[-np.inf,-0.05, -0.01, -0.005, 0, 0.005, 0.01, 0.02, 0.05,np.inf], sort=False).to_csv(f,header=False,sep='\t')

@ -0,0 +1,47 @@
import pandas as pd
df = pd.read_excel(r'C:\Users\鸽子\Desktop\浙江电量20231202.xlsx', sheet_name=1)
df['pt_date'] = pd.to_datetime(df['pt_date'])
# 移动平均
dict_big = {}
dict_ok = {}
# for city in df['city_name'].drop_duplicates():
#
# df_city1 = df[(df['city_name'] == city) & (df['county_name'].isnull())].set_index('pt_date').loc['2023-11']
# resut_df = pd.DataFrame({})
# index_level = []
# tq_list = []
# pred_list = []
# loss_list = []
# rate_list = []
# for level in df_city1.columns[2:]:
#
# index_level.append(level)
#
# df_moving_avg = pd.DataFrame(df_city1[:-3][level], index=df_city1[:-3].index)
# future = pd.date_range(start=df_city1.index[-3], periods=3, freq='D')
#
# for date in future:
# df_moving_avg.loc[date, level] = df_moving_avg[-3:].mean().values
# loss = (df_city1[level].tail(-3).sum() - df_moving_avg.tail(-3).sum()) / df_city1[level].sum()
# tq_list.append(df_city1[level].sum())
# pred_list.append(df_moving_avg[level].sum())
# loss_list.append(df_city1[level].sum()-df_moving_avg[level].sum())
# rate_list.append((df_city1[level].sum()-df_moving_avg[level].sum())/df_city1[level].sum())
# resut_df = pd.DataFrame({'同期电量':tq_list,'预测电量':pred_list,'偏差':loss_list,'偏差率':rate_list},index=index_level)
# with pd.ExcelWriter(r'C:\Users\鸽子\Desktop\11月移动平均分压.xlsx',mode='a',if_sheet_exists='replace',engine='openpyxl') as writer:
# resut_df.to_excel(writer,sheet_name=f'{city[4:6]}')
excel_file = pd.ExcelFile(r'C:\Users\鸽子\Desktop\11月移动平均分压.xlsx')
df1 = pd.read_excel(excel_file,sheet_name=1)
df1.set_index(df1.columns[0],inplace=True)
for sheet in excel_file.sheet_names[2:]:
df = pd.read_excel(excel_file,sheet_name=sheet)
df.set_index(df.columns[0],inplace=True)
df1 += df
df1['偏差'] = df1['同期电量']-df1['预测电量']
df1['偏差率'] = df1['偏差']/df1['同期电量']
df1.to_excel('移动平均_11月分压汇总.xlsx')
print(df1)

@ -87,7 +87,7 @@ def data_preprocessing(data):
# # 训练 # # 训练
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
#
# # 标准化到0~1 # # 标准化到0~1
# max_value = np.max(dataset_x) # max_value = np.max(dataset_x)
# min_value = np.min(dataset_x) # min_value = np.min(dataset_x)

@ -12,6 +12,7 @@ def normal(data):
file_dir = './浙江各地市行业电量数据' file_dir = './浙江各地市行业电量数据'
# df = pd.read_excel(r'C:\Users\鸽子\Desktop\浙江电量20231202.xlsx')
for city in os.listdir(file_dir): for city in os.listdir(file_dir):
df_city = pd.read_excel(os.path.join(file_dir, city)) df_city = pd.read_excel(os.path.join(file_dir, city))
df_city['stat_date'] = df_city['stat_date'].map(lambda x: str(x).strip()[:10]) df_city['stat_date'] = df_city['stat_date'].map(lambda x: str(x).strip()[:10])
@ -19,13 +20,16 @@ for city in os.listdir(file_dir):
list_goal = [] list_goal = []
list_industry = [] list_industry = []
result_dict = {} result_dict = {}
for industry in df_city.columns[2:]: for industry in df_city.columns[3:]:
s1 = df_city[['stat_date', industry]] s1 = df_city[['stat_date', industry]]
df_train = s1[(s1['stat_date'] >= '2022-09-30') & (s1['stat_date'] <= '2023-10-31')].sort_values(by='stat_date')
df_train.rename(columns={'stat_date': 'ds', industry: 'y'}, inplace=True)
ds_train = s1[(s1['stat_date'] >= '2022-09-30') & (s1['stat_date'] <= '2023-11-27')].sort_values(by='stat_date')
ds_train.rename(columns={'stat_date': 'ds', industry: 'y'}, inplace=True)
df_train = ds_train.copy()
df_train['y'] = df_train['y'].where(normal(df_train['y']), other=np.nan).fillna(method='ffill') df_train['y'] = df_train['y'].where(normal(df_train['y']), other=np.nan).fillna(method='ffill')
# df_test = s1[(s1['ds'] >= '2022-08-31') & (s1['ds'] <= '2023-10-31')].sort_values(by='ds')
model = Prophet(yearly_seasonality=True, weekly_seasonality=True, daily_seasonality=True) model = Prophet(yearly_seasonality=True, weekly_seasonality=True, daily_seasonality=True)
model.add_country_holidays(country_name="CN") model.add_country_holidays(country_name="CN")
@ -33,16 +37,16 @@ for city in os.listdir(file_dir):
future = model.make_future_dataframe(periods=3, freq='D') future = model.make_future_dataframe(periods=3, freq='D')
predict = model.predict(future) predict = model.predict(future)
print(city,industry) print(city[:2],industry)
predict = predict[['ds', 'yhat']].set_index('ds').loc['2023-10'].rename(columns={'yhat':'售电量'}) predict = predict[['ds', 'yhat']].set_index('ds').loc['2023-11'].rename(columns={'yhat':'售电量'})
df_train.rename(columns={'y':'售电量'},inplace=True) ds_train.rename(columns={'y':'售电量'},inplace=True)
result = pd.concat((df_train.set_index('ds').loc['2023-10'][:28],predict[-3:]))
result_dict[industry] = list(result['售电量'])
result = pd.concat((ds_train.set_index('ds').loc['2023-11'][:27],predict[-3:]))
result_dict[industry] = list(result['售电量'])
with pd.ExcelWriter(r'C:\Users\鸽子\Desktop\行业电量v1130.xlsx',mode='a',if_sheet_exists='replace',engine='openpyxl') as writer: with pd.ExcelWriter(r'C:\Users\鸽子\Desktop\行业电量v1130.xlsx',mode='a',if_sheet_exists='replace',engine='openpyxl') as writer:
pd.DataFrame(result_dict,index=pd.date_range(start=f'2023-10-01', end=f'2023-10-31', freq='D').strftime('%Y-%m-%d')).to_excel(writer,sheet_name=city) pd.DataFrame(result_dict,index=pd.date_range(start=f'2023-11-01', end=f'2023-11-30', freq='D').strftime('%Y-%m-%d')).to_excel(writer,sheet_name=city[:2])
# df = predict.join(s1.set_index('ds')).loc['2023-8'] # df = predict.join(s1.set_index('ds')).loc['2023-8']
# df['偏差率'] = (df['y'] - df['yhat']) / df['y'] # df['偏差率'] = (df['y'] - df['yhat']) / df['y']

@ -0,0 +1,42 @@
import pandas as pd
df = pd.read_excel(r'C:\Users\鸽子\Desktop\浙江电量20231202.xlsx', sheet_name=2)
df['stat_date'] = pd.to_datetime(df['stat_date'])
# 移动平均
city = df['city_name'].iloc[0]
print(city)
df_city1 = df[df['city_name'] == city].set_index('stat_date').loc['2023-11']
dict_big = {}
dict_ok = {}
resut_df = pd.DataFrame({})
index_industry = []
tq_list = []
pred_list = []
loss_list = []
rate_list = []
for industry in df_city1.columns[1:]:
index_industry.append(industry)
df_moving_avg = pd.DataFrame(df_city1[:-3][industry], index=df_city1[:-3].index)
future = pd.date_range(start=df_city1.index[-3], periods=3, freq='D')
for date in future:
df_moving_avg.loc[date, industry] = df_moving_avg[-3:].mean().values
loss = (df_city1[industry].tail(-3).sum() - df_moving_avg.tail(-3).sum()) / df_city1[industry].sum()
tq_list.append(df_city1[industry].sum())
pred_list.append(df_moving_avg[industry].sum())
loss_list.append(df_city1[industry].sum()-df_moving_avg[industry].sum())
rate_list.append((df_city1[industry].sum()-df_moving_avg[industry].sum())/df_city1[industry].sum())
resut_df = pd.DataFrame({'同期电量':tq_list,'预测电量':pred_list,'偏差':loss_list,'偏差率':rate_list},index=index_industry)
print(resut_df)
resut_df.to_excel(r'C:\Users\鸽子\Desktop\移动平均_丽水_行业.xlsx')
# if loss.values >= 0.005:
# dict_big[industry] = loss.values[0]
# else:
# dict_ok[industry] = loss.values[0]
# print(len(dict_ok))
# print(len(dict_big))
Loading…
Cancel
Save