|
|
|
@ -53,36 +53,36 @@ def data_preprocessing(data):
|
|
|
|
|
return data
|
|
|
|
|
|
|
|
|
|
# 拼接数据集
|
|
|
|
|
# file_dir = r'./浙江各地市分电压日电量数据'
|
|
|
|
|
# excel = os.listdir(file_dir)[0]
|
|
|
|
|
# data = pd.read_excel(os.path.join(file_dir, excel), sheet_name=0, index_col='stat_date')
|
|
|
|
|
# data.drop(columns='地市',inplace=True)
|
|
|
|
|
# data = data_preprocessing(data)
|
|
|
|
|
#
|
|
|
|
|
# df = data[data.columns[0]]
|
|
|
|
|
# df.dropna(inplace = True)
|
|
|
|
|
# dataset_x, dataset_y = create_dataset(df, DAYS_FOR_TRAIN)
|
|
|
|
|
#
|
|
|
|
|
# for level in data.columns[1:]:
|
|
|
|
|
# df = data[level]
|
|
|
|
|
# df.dropna(inplace=True)
|
|
|
|
|
# x, y = create_dataset(df, DAYS_FOR_TRAIN)
|
|
|
|
|
# dataset_x = np.concatenate((dataset_x, x))
|
|
|
|
|
# dataset_y = np.concatenate((dataset_y, y))
|
|
|
|
|
#
|
|
|
|
|
#
|
|
|
|
|
# for excel in os.listdir(file_dir)[1:]:
|
|
|
|
|
#
|
|
|
|
|
# data = pd.read_excel(os.path.join(file_dir,excel), sheet_name=0,index_col='stat_date')
|
|
|
|
|
# data.drop(columns='地市', inplace=True)
|
|
|
|
|
# data = data_preprocessing(data)
|
|
|
|
|
#
|
|
|
|
|
# for level in data.columns:
|
|
|
|
|
# df = data[level]
|
|
|
|
|
# df.dropna(inplace=True)
|
|
|
|
|
# x,y = create_dataset(df,DAYS_FOR_TRAIN)
|
|
|
|
|
# dataset_x = np.concatenate((dataset_x,x))
|
|
|
|
|
# dataset_y = np.concatenate((dataset_y,y))
|
|
|
|
|
file_dir = r'./浙江各地市分电压日电量数据'
|
|
|
|
|
excel = os.listdir(file_dir)[0]
|
|
|
|
|
data = pd.read_excel(os.path.join(file_dir, excel), sheet_name=0, index_col='stat_date')
|
|
|
|
|
data.drop(columns='地市',inplace=True)
|
|
|
|
|
data = data_preprocessing(data)
|
|
|
|
|
|
|
|
|
|
df = data[data.columns[0]]
|
|
|
|
|
df.dropna(inplace = True)
|
|
|
|
|
dataset_x, dataset_y = create_dataset(df, DAYS_FOR_TRAIN)
|
|
|
|
|
|
|
|
|
|
for level in data.columns[1:]:
|
|
|
|
|
df = data[level]
|
|
|
|
|
df.dropna(inplace=True)
|
|
|
|
|
x, y = create_dataset(df, DAYS_FOR_TRAIN)
|
|
|
|
|
dataset_x = np.concatenate((dataset_x, x))
|
|
|
|
|
dataset_y = np.concatenate((dataset_y, y))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
for excel in os.listdir(file_dir)[1:]:
|
|
|
|
|
|
|
|
|
|
data = pd.read_excel(os.path.join(file_dir,excel), sheet_name=0,index_col='stat_date')
|
|
|
|
|
data.drop(columns='地市', inplace=True)
|
|
|
|
|
data = data_preprocessing(data)
|
|
|
|
|
|
|
|
|
|
for level in data.columns:
|
|
|
|
|
df = data[level]
|
|
|
|
|
df.dropna(inplace=True)
|
|
|
|
|
x,y = create_dataset(df,DAYS_FOR_TRAIN)
|
|
|
|
|
dataset_x = np.concatenate((dataset_x,x))
|
|
|
|
|
dataset_y = np.concatenate((dataset_y,y))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@ -90,68 +90,76 @@ def data_preprocessing(data):
|
|
|
|
|
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
|
|
|
|
#
|
|
|
|
|
# # 标准化到0~1
|
|
|
|
|
# max_value = np.max(dataset_x)
|
|
|
|
|
# min_value = np.min(dataset_x)
|
|
|
|
|
# dataset_x = (dataset_x - min_value) / (max_value - min_value)
|
|
|
|
|
# dataset_y = (dataset_y - min_value) / (max_value - min_value)
|
|
|
|
|
max_value = np.max(dataset_x)
|
|
|
|
|
min_value = np.min(dataset_x)
|
|
|
|
|
dataset_x = (dataset_x - min_value) / (max_value - min_value)
|
|
|
|
|
dataset_y = (dataset_y - min_value) / (max_value - min_value)
|
|
|
|
|
#
|
|
|
|
|
# print(max_value,min_value)
|
|
|
|
|
#
|
|
|
|
|
# # 划分训练集和测试集
|
|
|
|
|
# train_size = int(len(dataset_x)*0.7)
|
|
|
|
|
# train_x = dataset_x[:train_size]
|
|
|
|
|
# train_y = dataset_y[:train_size]
|
|
|
|
|
#
|
|
|
|
|
# # # 将数据改变形状,RNN 读入的数据维度是 (seq_size, batch_size, feature_size)
|
|
|
|
|
# train_x = train_x.reshape(-1, 1, DAYS_FOR_TRAIN)
|
|
|
|
|
# train_y = train_y.reshape(-1, 1, 3)
|
|
|
|
|
#
|
|
|
|
|
# # # 转为pytorch的tensor对象
|
|
|
|
|
# train_x = torch.from_numpy(train_x).to(device).type(torch.float32)
|
|
|
|
|
# train_y = torch.from_numpy(train_y).to(device).type(torch.float32)
|
|
|
|
|
# train_ds = TensorDataset(train_x,train_y)
|
|
|
|
|
# train_dl = DataLoader(train_ds,batch_size=128,shuffle=True,drop_last=True)
|
|
|
|
|
train_size = int(len(dataset_x)*0.7)
|
|
|
|
|
train_x = dataset_x[:train_size]
|
|
|
|
|
train_y = dataset_y[:train_size]
|
|
|
|
|
eval_x = dataset_x[train_size:]
|
|
|
|
|
eval_y = dataset_y[train_size:]
|
|
|
|
|
|
|
|
|
|
# 将数据改变形状,RNN 读入的数据维度是 (seq_size, batch_size, feature_size)
|
|
|
|
|
train_x = train_x.reshape(-1, 1, DAYS_FOR_TRAIN)
|
|
|
|
|
train_y = train_y.reshape(-1, 1, 3)
|
|
|
|
|
eval_x = eval_x.reshape(-1, 1, DAYS_FOR_TRAIN)
|
|
|
|
|
eval_y = eval_y.reshape(-1, 1, 3)
|
|
|
|
|
|
|
|
|
|
# 转为pytorch的tensor对象
|
|
|
|
|
train_x = torch.from_numpy(train_x).to(device).type(torch.float32)
|
|
|
|
|
train_y = torch.from_numpy(train_y).to(device).type(torch.float32)
|
|
|
|
|
eval_x = torch.from_numpy(eval_x).to(device).type(torch.float32)
|
|
|
|
|
eval_y = torch.from_numpy(eval_y).to(device).type(torch.float32)
|
|
|
|
|
|
|
|
|
|
model = LSTM_Regression(DAYS_FOR_TRAIN, 32, output_size=3, num_layers=2).to(device) # 导入模型并设置模型的参数输入输出层、隐藏层等
|
|
|
|
|
|
|
|
|
|
loss_function = nn.MSELoss()
|
|
|
|
|
optimizer = torch.optim.Adam(model.parameters(), lr=0.005, betas=(0.9, 0.999), eps=1e-08, weight_decay=0)
|
|
|
|
|
|
|
|
|
|
min_loss = 1
|
|
|
|
|
for i in range(2500):
|
|
|
|
|
model.train()
|
|
|
|
|
out = model(train_x)
|
|
|
|
|
loss = loss_function(out, train_y)
|
|
|
|
|
loss.backward()
|
|
|
|
|
optimizer.step()
|
|
|
|
|
optimizer.zero_grad()
|
|
|
|
|
|
|
|
|
|
model = LSTM_Regression(DAYS_FOR_TRAIN, 32, output_size=3, num_layers=2).to(device) # 导入模型并设置模型的参数输入输出层、隐藏层等
|
|
|
|
|
model.eval()
|
|
|
|
|
with torch.no_grad():
|
|
|
|
|
pred = model(eval_x)
|
|
|
|
|
eval_loss = loss_function(pred,eval_y)
|
|
|
|
|
if eval_loss <= min_loss:
|
|
|
|
|
min_loss = eval_loss
|
|
|
|
|
best_param = model.state_dict()
|
|
|
|
|
|
|
|
|
|
if (i+1) % 100 == 0:
|
|
|
|
|
print(f'epoch {i+1}/1500 loss:{round(loss.item(),5)}')
|
|
|
|
|
|
|
|
|
|
# train_loss = []
|
|
|
|
|
# loss_function = nn.MSELoss()
|
|
|
|
|
# optimizer = torch.optim.Adam(model.parameters(), lr=0.005, betas=(0.9, 0.999), eps=1e-08, weight_decay=0)
|
|
|
|
|
# for i in range(2500):
|
|
|
|
|
# # for j,(x,y) in enumerate(train_dl):
|
|
|
|
|
# out = model(train_x)
|
|
|
|
|
# loss = loss_function(out, train_y)
|
|
|
|
|
# loss.backward()
|
|
|
|
|
# optimizer.step()
|
|
|
|
|
# optimizer.zero_grad()
|
|
|
|
|
# train_loss.append(loss.item())
|
|
|
|
|
# if (i+1) % 100 == 0:
|
|
|
|
|
# print(f'epoch {i+1}/1500 loss:{round(loss.item(),5)}')
|
|
|
|
|
# # if (j + 1) % 100 == 0:
|
|
|
|
|
# # print(f'epoch {i+1}/1500 step {j+1}/{len(train_dl)} loss:{loss}' )
|
|
|
|
|
#
|
|
|
|
|
# # 保存模型
|
|
|
|
|
# torch.save(model.state_dict(),'8_dy3.pth')
|
|
|
|
|
# 保存模型
|
|
|
|
|
torch.save(best_param,'best_dy3.pth')
|
|
|
|
|
|
|
|
|
|
# for test
|
|
|
|
|
# model = model.eval()
|
|
|
|
|
#
|
|
|
|
|
# dataset_x = dataset_x.reshape(-1, 1, DAYS_FOR_TRAIN) # (seq_size, batch_size, feature_size)
|
|
|
|
|
# dataset_x = torch.from_numpy(dataset_x).to(device).type(torch.float32)
|
|
|
|
|
#
|
|
|
|
|
# pred_test = model(dataset_x) # 全量训练集
|
|
|
|
|
# # 模型输出 (seq_size, batch_size, output_size)
|
|
|
|
|
# pred_test = pred_test.view(-1)
|
|
|
|
|
# pred_test = np.concatenate((np.zeros(DAYS_FOR_TRAIN), pred_test.cpu().detach().numpy()))
|
|
|
|
|
#
|
|
|
|
|
# plt.plot(pred_test.reshape(-1), 'r', label='prediction')
|
|
|
|
|
# plt.plot(dataset_y.reshape(-1), 'b', label='real')
|
|
|
|
|
# plt.plot((train_size*3, train_size*3), (0, 1), 'g--') # 分割线 左边是训练数据 右边是测试数据的输出
|
|
|
|
|
# plt.legend(loc='best')
|
|
|
|
|
# plt.show()
|
|
|
|
|
model = model.eval()
|
|
|
|
|
|
|
|
|
|
dataset_x = dataset_x.reshape(-1, 1, DAYS_FOR_TRAIN) # (seq_size, batch_size, feature_size)
|
|
|
|
|
dataset_x = torch.from_numpy(dataset_x).to(device).type(torch.float32)
|
|
|
|
|
|
|
|
|
|
pred_test = model(dataset_x)
|
|
|
|
|
# 模型输出 (seq_size, batch_size, output_size)
|
|
|
|
|
pred_test = pred_test.view(-1)
|
|
|
|
|
pred_test = np.concatenate((np.zeros(DAYS_FOR_TRAIN), pred_test.cpu().detach().numpy()))
|
|
|
|
|
|
|
|
|
|
plt.plot(pred_test.reshape(-1), 'r', label='prediction')
|
|
|
|
|
plt.plot(dataset_y.reshape(-1), 'b', label='real')
|
|
|
|
|
plt.plot((train_size*3, train_size*3), (0, 1), 'g--') # 分割线 左边是训练数据 右边是测试数据的输出
|
|
|
|
|
plt.legend(loc='best')
|
|
|
|
|
plt.show()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# 创建测试集
|