删除重复数据集

main
get 1 year ago
parent 7ce1a2c9c1
commit 396f1f2758

@ -9,7 +9,7 @@ n2 = np.array([]).reshape(3,-1)
print(np.max([[1,2,3],[4,5,6]])) print(np.max([[1,2,3],[4,5,6]]))
file_dir = r'./浙江各地市分电压日电量数据' file_dir = r'../浙江电压等级电量/浙江各地市分电压日电量数据'
excel = os.listdir(file_dir)[0] excel = os.listdir(file_dir)[0]
df = pd.read_excel(os.path.join(file_dir, excel), sheet_name=0, index_col='stat_date') df = pd.read_excel(os.path.join(file_dir, excel), sheet_name=0, index_col='stat_date')
df.columns = df.columns.map(lambda x:x.strip()) df.columns = df.columns.map(lambda x:x.strip())
@ -38,4 +38,45 @@ print(df.tail())
# df1['stat_date'] = pd.to_datetime(df1['stat_date'],format='%Y%m%d') # df1['stat_date'] = pd.to_datetime(df1['stat_date'],format='%Y%m%d')
# df2 = pd.concat((df2,df1),ignore_index=True) # df2 = pd.concat((df2,df1),ignore_index=True)
# df2.to_excel(fr'C:\Users\鸽子\Desktop\浙江各地市行业电量数据\{city}.xlsx') # df2.to_excel(fr'C:\Users\鸽子\Desktop\浙江各地市行业电量数据\{city}.xlsx')
pd.set_option('display.width',None)
def normal(df):
drop_col = [x for x in df.columns if len(df[df[x]==0])/len(df) >= 0.5]
df.drop(columns=drop_col,inplace=True)
for col in df.columns:
try:
high = df[col].describe()['75%'] + 1.5 * (df[col].describe()['75%'] - df[col].describe()['25%'])
low = df[col].describe()['25%'] - 1.5 * (df[col].describe()['75%'] - df[col].describe()['25%'])
df[col] = df[col].map(lambda x: np.nan if (x >= high) | (x <= low) else x)
df[col] = df[col].fillna(method='ffill')
df[col] = df[col].fillna(method='bfill')
except:
pass
return df
file_dir = './浙江各地市行业电量数据'
city1 = os.listdir(file_dir)[0]
df_city = pd.read_excel(os.path.join(file_dir, city1))
df_city = normal(df_city)
df_city = df_city.drop(columns='地市')
df_city[df_city.columns[1:]] /= 10000
df_city['stat_date'] = df_city['stat_date'].map(lambda x: str(x).strip()[:10])
df_city.stat_date = pd.to_datetime(df_city.stat_date)
print(df_city.describe())
list_1000 = []
list_100 = []
list_10 = []
list_1 = []
for i in df_city.columns[1:]:
if df_city[i].describe()['mean']>=1000:
list_1000.append(i)
if df_city[i].describe()['mean'] < 1000 and df_city[i].describe()['mean'] >= 100:
list_100.append(i)
if df_city[i].describe()['mean'] < 100 and df_city[i].describe()['mean'] >= 10:
list_10.append(i)
else:
list_1.append(i)
print('list_1:',list_1)
print('list_10:',list_10)
print('list_100:',list_100)
print('list_1000:',list_1000)

@ -34,15 +34,18 @@ class LSTM(nn.Module):
def normal(df): def normal(df):
drop_col = [x for x in df.columns if len(df[df[x]==0])/len(df) >= 0.5]
df.drop(columns=drop_col,inplace=True)
for col in df.columns: for col in df.columns:
try: try:
high = df[col].describe()['75%'] + 1.5 * (df[col].describe()['75%'] - df[col].describe()['25%']) high = df[col].describe()['75%'] + 1.5 * (df[col].describe()['75%'] - df[col].describe()['25%'])
low = df[col].describe()['25%'] - 1.5 * (df[col].describe()['75%'] - df[col].describe()['25%']) low = df[col].describe()['25%'] - 1.5 * (df[col].describe()['75%'] - df[col].describe()['25%'])
df[col] = df[col].map(lambda x: np.nan if (x >= high) | (x <= low) else x) df[col] = df[col].map(lambda x: np.nan if (x >= high) | (x <= low) else x)
df[col] = df[col].fillna(method='ffill') df[col] = df[col].fillna(method='ffill')
df[col] = df[col].fillna(method='bfill')
except: except:
pass pass
return df
def create_data(df_industry, industry): def create_data(df_industry, industry):
dataset_x = [] dataset_x = []
@ -83,10 +86,13 @@ df_city[df_city.columns[1:]] /= 10000
df_city['stat_date'] = df_city['stat_date'].map(lambda x: str(x).strip()[:10]) df_city['stat_date'] = df_city['stat_date'].map(lambda x: str(x).strip()[:10])
df_city.stat_date = pd.to_datetime(df_city.stat_date) df_city.stat_date = pd.to_datetime(df_city.stat_date)
industry = '全社会用电总计' industry = '全社会用电总计'
df_industry = df_city[['stat_date', industry]] df_industry = df_city[['stat_date', industry]]
dataset_x, dataset_y = create_data(df_industry, industry) dataset_x, dataset_y = create_data(df_industry, industry)
for industry in df_city.columns[2:]: for industry in df_city.columns[2:]:
df_level = df_city[['stat_date', industry]] df_level = df_city[['stat_date', industry]]
x, y = create_data(df_level, industry) x, y = create_data(df_level, industry)
@ -95,6 +101,7 @@ for industry in df_city.columns[2:]:
for excel in os.listdir(file_dir)[1:]: for excel in os.listdir(file_dir)[1:]:
df_city = pd.read_excel(os.path.join(file_dir, excel)).drop(columns='地市') df_city = pd.read_excel(os.path.join(file_dir, excel)).drop(columns='地市')
df_city = normal(df_city)
df_city[df_city.columns[1:]] /= 10000 df_city[df_city.columns[1:]] /= 10000
df_city['stat_date'] = df_city['stat_date'].map(lambda x: str(x).strip()[:10]) df_city['stat_date'] = df_city['stat_date'].map(lambda x: str(x).strip()[:10])
df_city.stat_date = pd.to_datetime(df_city.stat_date) df_city.stat_date = pd.to_datetime(df_city.stat_date)
@ -104,6 +111,7 @@ for excel in os.listdir(file_dir)[1:]:
dataset_x = np.concatenate([dataset_x, x]) dataset_x = np.concatenate([dataset_x, x])
dataset_y = np.concatenate([dataset_y, y]) dataset_y = np.concatenate([dataset_y, y])
print(dataset_x.shape, dataset_y.shape) print(dataset_x.shape, dataset_y.shape)
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
@ -114,7 +122,7 @@ dataset_x = (dataset_x - min_value) / (max_value - min_value)
dataset_y = (dataset_y - min_value) / (max_value - min_value) dataset_y = (dataset_y - min_value) / (max_value - min_value)
print(max_value, min_value) print(max_value, min_value)
print(np.max(dataset_x), np.min(dataset_x), np.max(dataset_y), np.min(dataset_y))
# 划分训练集和测试集 # 划分训练集和测试集
train_size = int(len(dataset_x) * 0.8) train_size = int(len(dataset_x) * 0.8)

Loading…
Cancel
Save