输出预测结果

main
鸽子 1 year ago
parent 765dba1ed1
commit 376b797e45

@ -0,0 +1,43 @@
import pandas as pd
import xgboost as xgb
from sklearn.model_selection import train_test_split
from sklearn.metrics import r2_score
import numpy as np
df = pd.read_excel(r'./400v入模数据.xlsx')
df['stat_date'] = pd.to_datetime(df['stat_date'])
print(df.corr()['0.4kv及以下'])
X = df[(df['stat_date']>='2021-01-01')&(df['stat_date']<='2023-09-28')].drop(columns=['0.4kv及以下']).set_index('stat_date')
y = df[(df['stat_date']>='2021-01-01')&(df['stat_date']<='2023-09-28')]['0.4kv及以下']
x_eval = df[(df['stat_date']<='2023-09-30')&(df['stat_date']>='2023-09-01')].drop(columns=['0.4kv及以下']).set_index('stat_date')
print(x_eval)
y_eval = df[(df['stat_date']<='2023-09-30')&(df['stat_date']>='2023-09-01')][['0.4kv及以下','city']]
x_train,x_test,y_train,y_test = train_test_split(X,y,test_size=0.2,random_state=42)
model = xgb.XGBRegressor(max_depth=6,learning_rate=0.05,n_estimators=250)
model.fit(x_train,y_train)
y_pred = model.predict(x_test)
print(r2_score(y_test,y_pred))
predict = model.predict(x_eval)
result = pd.DataFrame({'real':y_eval.drop(columns='city').values.reshape(-1),'pred':predict},index=x_eval.index)
print(result.loc['2023-09-28':'2023-09-30'])
dict2 = {'杭州':0,'湖州':1,'嘉兴':2,'金华':3,'丽水':4,'宁波':5,'衢州':6,'绍兴':7,'台州':8,'温州':9,'舟山':10}
dict1 = {}
for city in x_eval['city'].drop_duplicates():
eval_x = x_eval[x_eval['city']==city]
eval_y = y_eval[y_eval['city']==city]['0.4kv及以下']
pred = model.predict(eval_x)
loss_rate = (np.sum(pred[-3:])-np.sum(eval_y[-3:]))/np.sum(eval_y)
dict1[city] = loss_rate
for key in dict2.keys():
dict2[key] = dict1[dict2[key]]
print(dict2)

@ -38,10 +38,10 @@ df = df.loc[normal(df['0.4kv及以下']).index]
print(df.head())
x_train = df.loc['2022-7':'2023-7'].drop(columns='0.4kv及以下')
y_train = df.loc['2022-7':'2023-7']['0.4kv及以下']
x_eval = df.loc['2023-8'].drop(columns='0.4kv及以下')
y_eval = df.loc['2023-8']['0.4kv及以下']
x_train = df.loc['2022-7':'2023-8'].drop(columns='0.4kv及以下')
y_train = df.loc['2022-7':'2023-8']['0.4kv及以下']
x_eval = df.loc['2023-9'].drop(columns='0.4kv及以下')
y_eval = df.loc['2023-9']['0.4kv及以下']
x_train,x_test,y_train,y_test = train_test_split(x_train,y_train,test_size=0.2,random_state=42)
model = xgb.XGBRegressor(max_depth=6,learning_rate=0.05,n_estimators=150)

@ -0,0 +1,75 @@
import pandas as pd
import matplotlib.pyplot as plt
import xgboost as xgb
from sklearn.model_selection import train_test_split
from sklearn.metrics import r2_score
def normal(x):
high = x.describe()['75%'] + 1.5*(x.describe()['75%']-x.describe()['25%'])
low = x.describe()['25%'] - 1.5*(x.describe()['75%']-x.describe()['25%'])
return x[(x<=high)&(x>=low)]
def season(x):
if str(x)[5:7] in ('04', '05', '06', '11'):
return 0
elif str(x)[5:7] in ('01', '02', '03', '09', '10', '12'):
return 1
else:
return 2
df = pd.read_excel('./浙江各地市分电压日电量数据/衢州 .xlsx')
df = df[['stat_date','0.4kv及以下']]
df['0.4kv及以下'] = df['0.4kv及以下']/10000
df['stat_date'] = df['stat_date'].map(lambda x:x.strip())
df['stat_date'] = pd.to_datetime(df['stat_date'])
df_qw = pd.read_excel(r'C:\python-project\p1031\入模数据\衢州.xlsx')
df_qw.columns = df_qw.columns.map(lambda x:x.strip())
df_qw = df_qw[['dtdate','tem_max','tem_min','holiday','24ST']]
df_qw['dtdate'] = pd.to_datetime(df_qw['dtdate'])
df = pd.merge(df,df_qw,left_on='stat_date',right_on='dtdate',how='left')
df.drop(columns='dtdate',inplace=True)
df.set_index('stat_date',inplace=True)
# list2 = []
# list0 = []
# list1 = []
# for i in ('01','02','03','04','05','06','07','08','09','10','11','12'):
# month_index = df.index.strftime('%Y-%m-%d').str[5:7] == f'{i}'
# # print(df.loc[month_index]['0.4kv及以下'].max(),df['0.4kv及以下'].describe()['75%'])
# if df.loc[month_index]['0.4kv及以下'].mean() >= df['0.4kv及以下'].describe()['75%']:
# list2.append(i)
# elif df.loc[month_index]['0.4kv及以下'].mean() <= df['0.4kv及以下'].describe()['25%']:
# list0.append(i)
# else:
# list1.append(i)
# print(list0,list1,list2)
df['season'] = df.index.map(season)
df = df.loc[normal(df['0.4kv及以下']).index]
x_train = df.loc['2021-7':'2023-9'][:-3].drop(columns='0.4kv及以下')
y_train = df.loc['2021-7':'2023-9'][:-3]['0.4kv及以下']
x_eval = df.loc['2023-9'].drop(columns='0.4kv及以下')
y_eval = df.loc['2023-9']['0.4kv及以下']
x_train,x_test,y_train,y_test = train_test_split(x_train,y_train,test_size=0.2,random_state=42)
model = xgb.XGBRegressor(max_depth=6,learning_rate=0.05,n_estimators=150)
model.fit(x_train,y_train)
y_pred = model.predict(x_test)
print(r2_score(y_test,y_pred))
predict = model.predict(x_eval)
result = pd.DataFrame({'eval':y_eval,'pred':predict},index=y_eval.index)
print(result)
print((result['eval'][-3:].sum()-result['pred'][-3:].sum())/result['eval'].sum())

@ -16,6 +16,7 @@ for excel,qw_excel in zip(os.listdir(fir_dir),os.listdir(qw_dir)):
df_city = df_city[['stat_date','0.4kv及以下']]
df_city['0.4kv及以下'] = df_city['0.4kv及以下']/10000
df_city = df_city.loc[normal(df_city['0.4kv及以下']).index]
df_city['stat_date'] = df_city['stat_date'].map(lambda x:x.strip())
df_city['stat_date'] = pd.to_datetime(df_city['stat_date'])
@ -53,13 +54,14 @@ for excel,qw_excel in zip(os.listdir(fir_dir),os.listdir(qw_dir)):
else:
return 2
print(f'{excel[:2]}',list0)
df['season'] = df.index.map(season)
dict1 = {'杭州':0,'湖州':1,'嘉兴':2,'金华':3,'丽水':4,'宁波':5,'衢州':6,'绍兴':7,'台州':8,'温州':9,'舟山':10}
df['city'] = dict1[excel[:2]]
df.reset_index(inplace=True)
result = pd.concat(result,df)
df.to_excel(f'./400v入模数据/{excel[:2]}.xlsx')
# dict1 = {'杭州':0,'湖州':1,'嘉兴':2,'金华':3,'丽水':4,'宁波':5,'衢州':6,'绍兴':7,'台州':8,'温州':9,'舟山':10}
# df['city'] = dict1[excel[:2]]
# df.reset_index(inplace=True)
# result = pd.concat([result,df])
print(df)

@ -1,5 +1,4 @@
import os
import numpy as np
import pandas as pd
n1 = np.array([[1,1,1]])
@ -9,17 +8,17 @@ n2 = np.array([]).reshape(3,-1)
print(np.max([[1,2,3],[4,5,6]]))
file_dir = r'C:\Users\user\Desktop\浙江各地市分电压日电量数据'
df = pd.read_excel(r'C:\Users\user\Desktop\浙江省各地市日电量及分压数据21-23年.xlsx',sheet_name=1)
df.columns = df.columns.map(lambda x:x.strip())
for city in df['地市'].drop_duplicates():
df_city = df[df['地市']== city]
df_city['stat_date'] = df_city['stat_date'].map(lambda x:x.strip())
df_city['stat_date'] = pd.to_datetime(df_city['stat_date'],format='%Y-%m-%d')
df_city = df_city[df_city.columns[:-1]]
df_city.sort_values(by='stat_date',ascending=True,inplace=True)
df_city['stat_date'] = df_city['stat_date'].astype('str')
df_city.to_excel(fr'C:\Users\user\Desktop\浙江各地市分电压日电量数据\{city}.xlsx',index=False)
# file_dir = r'C:\Users\user\Desktop\浙江各地市分电压日电量数据'
# df = pd.read_excel(r'C:\Users\user\Desktop\浙江省各地市日电量及分压数据21-23年.xlsx',sheet_name=1)
# df.columns = df.columns.map(lambda x:x.strip())
# for city in df['地市'].drop_duplicates():
# df_city = df[df['地市']== city]
# df_city['stat_date'] = df_city['stat_date'].map(lambda x:x.strip())
# df_city['stat_date'] = pd.to_datetime(df_city['stat_date'],format='%Y-%m-%d')
# df_city = df_city[df_city.columns[:-1]]
# df_city.sort_values(by='stat_date',ascending=True,inplace=True)
# df_city['stat_date'] = df_city['stat_date'].astype('str')
# df_city.to_excel(fr'C:\Users\user\Desktop\浙江各地市分电压日电量数据\{city}.xlsx',index=False)
# file_Dir = r'C:\Users\鸽子\Desktop\浙江各地市行业电量数据'
# for excel in os.listdir(file_Dir):
# df1 = pd.read_excel(r'C:\Users\鸽子\Desktop\浙江各地市日电量数据-27-28).xlsx',sheet_name=1)
@ -34,3 +33,8 @@ for city in df['地市'].drop_duplicates():
# df2 = pd.concat((df2,df1),ignore_index=True)
# df2.to_excel(fr'C:\Users\鸽子\Desktop\浙江各地市行业电量数据\{city}.xlsx')
df = pd.read_csv(r'C:\Users\鸽子\Desktop\浙江各区县数据(2).csv')
df.columns = df.columns.map(lambda x:x.strip())
print(df.columns)
print(dict(zip(df.columns,[(df[x]==0).sum()/len(df) for x in df.columns])))

Loading…
Cancel
Save