输出预测结果
parent
765dba1ed1
commit
376b797e45
@ -0,0 +1,43 @@
|
||||
import pandas as pd
|
||||
import xgboost as xgb
|
||||
from sklearn.model_selection import train_test_split
|
||||
from sklearn.metrics import r2_score
|
||||
import numpy as np
|
||||
|
||||
df = pd.read_excel(r'./400v入模数据.xlsx')
|
||||
df['stat_date'] = pd.to_datetime(df['stat_date'])
|
||||
|
||||
print(df.corr()['0.4kv及以下'])
|
||||
|
||||
X = df[(df['stat_date']>='2021-01-01')&(df['stat_date']<='2023-09-28')].drop(columns=['0.4kv及以下']).set_index('stat_date')
|
||||
|
||||
y = df[(df['stat_date']>='2021-01-01')&(df['stat_date']<='2023-09-28')]['0.4kv及以下']
|
||||
x_eval = df[(df['stat_date']<='2023-09-30')&(df['stat_date']>='2023-09-01')].drop(columns=['0.4kv及以下']).set_index('stat_date')
|
||||
print(x_eval)
|
||||
y_eval = df[(df['stat_date']<='2023-09-30')&(df['stat_date']>='2023-09-01')][['0.4kv及以下','city']]
|
||||
|
||||
|
||||
x_train,x_test,y_train,y_test = train_test_split(X,y,test_size=0.2,random_state=42)
|
||||
model = xgb.XGBRegressor(max_depth=6,learning_rate=0.05,n_estimators=250)
|
||||
model.fit(x_train,y_train)
|
||||
y_pred = model.predict(x_test)
|
||||
print(r2_score(y_test,y_pred))
|
||||
|
||||
predict = model.predict(x_eval)
|
||||
result = pd.DataFrame({'real':y_eval.drop(columns='city').values.reshape(-1),'pred':predict},index=x_eval.index)
|
||||
print(result.loc['2023-09-28':'2023-09-30'])
|
||||
|
||||
|
||||
dict2 = {'杭州':0,'湖州':1,'嘉兴':2,'金华':3,'丽水':4,'宁波':5,'衢州':6,'绍兴':7,'台州':8,'温州':9,'舟山':10}
|
||||
dict1 = {}
|
||||
for city in x_eval['city'].drop_duplicates():
|
||||
eval_x = x_eval[x_eval['city']==city]
|
||||
eval_y = y_eval[y_eval['city']==city]['0.4kv及以下']
|
||||
pred = model.predict(eval_x)
|
||||
loss_rate = (np.sum(pred[-3:])-np.sum(eval_y[-3:]))/np.sum(eval_y)
|
||||
dict1[city] = loss_rate
|
||||
|
||||
|
||||
for key in dict2.keys():
|
||||
dict2[key] = dict1[dict2[key]]
|
||||
print(dict2)
|
@ -0,0 +1,75 @@
|
||||
import pandas as pd
|
||||
import matplotlib.pyplot as plt
|
||||
import xgboost as xgb
|
||||
from sklearn.model_selection import train_test_split
|
||||
from sklearn.metrics import r2_score
|
||||
def normal(x):
|
||||
high = x.describe()['75%'] + 1.5*(x.describe()['75%']-x.describe()['25%'])
|
||||
low = x.describe()['25%'] - 1.5*(x.describe()['75%']-x.describe()['25%'])
|
||||
return x[(x<=high)&(x>=low)]
|
||||
|
||||
def season(x):
|
||||
if str(x)[5:7] in ('04', '05', '06', '11'):
|
||||
return 0
|
||||
elif str(x)[5:7] in ('01', '02', '03', '09', '10', '12'):
|
||||
return 1
|
||||
else:
|
||||
return 2
|
||||
|
||||
df = pd.read_excel('./浙江各地市分电压日电量数据/衢州 .xlsx')
|
||||
df = df[['stat_date','0.4kv及以下']]
|
||||
df['0.4kv及以下'] = df['0.4kv及以下']/10000
|
||||
df['stat_date'] = df['stat_date'].map(lambda x:x.strip())
|
||||
df['stat_date'] = pd.to_datetime(df['stat_date'])
|
||||
|
||||
|
||||
df_qw = pd.read_excel(r'C:\python-project\p1031\入模数据\衢州.xlsx')
|
||||
df_qw.columns = df_qw.columns.map(lambda x:x.strip())
|
||||
|
||||
df_qw = df_qw[['dtdate','tem_max','tem_min','holiday','24ST']]
|
||||
df_qw['dtdate'] = pd.to_datetime(df_qw['dtdate'])
|
||||
|
||||
|
||||
df = pd.merge(df,df_qw,left_on='stat_date',right_on='dtdate',how='left')
|
||||
df.drop(columns='dtdate',inplace=True)
|
||||
df.set_index('stat_date',inplace=True)
|
||||
|
||||
|
||||
# list2 = []
|
||||
# list0 = []
|
||||
# list1 = []
|
||||
# for i in ('01','02','03','04','05','06','07','08','09','10','11','12'):
|
||||
# month_index = df.index.strftime('%Y-%m-%d').str[5:7] == f'{i}'
|
||||
# # print(df.loc[month_index]['0.4kv及以下'].max(),df['0.4kv及以下'].describe()['75%'])
|
||||
# if df.loc[month_index]['0.4kv及以下'].mean() >= df['0.4kv及以下'].describe()['75%']:
|
||||
# list2.append(i)
|
||||
# elif df.loc[month_index]['0.4kv及以下'].mean() <= df['0.4kv及以下'].describe()['25%']:
|
||||
# list0.append(i)
|
||||
# else:
|
||||
# list1.append(i)
|
||||
# print(list0,list1,list2)
|
||||
|
||||
|
||||
df['season'] = df.index.map(season)
|
||||
df = df.loc[normal(df['0.4kv及以下']).index]
|
||||
|
||||
x_train = df.loc['2021-7':'2023-9'][:-3].drop(columns='0.4kv及以下')
|
||||
|
||||
y_train = df.loc['2021-7':'2023-9'][:-3]['0.4kv及以下']
|
||||
x_eval = df.loc['2023-9'].drop(columns='0.4kv及以下')
|
||||
y_eval = df.loc['2023-9']['0.4kv及以下']
|
||||
|
||||
|
||||
x_train,x_test,y_train,y_test = train_test_split(x_train,y_train,test_size=0.2,random_state=42)
|
||||
model = xgb.XGBRegressor(max_depth=6,learning_rate=0.05,n_estimators=150)
|
||||
model.fit(x_train,y_train)
|
||||
y_pred = model.predict(x_test)
|
||||
print(r2_score(y_test,y_pred))
|
||||
|
||||
predict = model.predict(x_eval)
|
||||
result = pd.DataFrame({'eval':y_eval,'pred':predict},index=y_eval.index)
|
||||
print(result)
|
||||
print((result['eval'][-3:].sum()-result['pred'][-3:].sum())/result['eval'].sum())
|
||||
|
||||
|
||||
|
Loading…
Reference in New Issue