|
|
|
import os
|
|
|
|
|
|
|
|
import numpy as np
|
|
|
|
import pandas as pd
|
|
|
|
n1 = np.array([[1,1,1]])
|
|
|
|
n2 = np.array([1,1,1]).reshape(1,-1)
|
|
|
|
print(n2)
|
|
|
|
n2 = np.array([]).reshape(3,-1)
|
|
|
|
|
|
|
|
print(np.max([[1,2,3],[4,5,6]]))
|
|
|
|
|
|
|
|
file_dir = r'../浙江电压等级电量/浙江各地市分电压日电量数据'
|
|
|
|
excel = os.listdir(file_dir)[0]
|
|
|
|
df = pd.read_excel(os.path.join(file_dir, excel), sheet_name=0, index_col='stat_date')
|
|
|
|
df.columns = df.columns.map(lambda x:x.strip())
|
|
|
|
df.index = pd.to_datetime(df.index)
|
|
|
|
df.sort_index(inplace=True)
|
|
|
|
df = df.loc['2021-01':'2023-08'][:-3]
|
|
|
|
print(df.tail())
|
|
|
|
# for city in df['地市'].drop_duplicates():
|
|
|
|
# df_city = df[df['地市']== city]
|
|
|
|
# df_city['stat_date'] = df_city['stat_date'].map(lambda x:x.strip())
|
|
|
|
# df_city['stat_date'] = pd.to_datetime(df_city['stat_date'],format='%Y-%m-%d')
|
|
|
|
# df_city = df_city[df_city.columns[:-1]]
|
|
|
|
# df_city.sort_values(by='stat_date',ascending=True,inplace=True)
|
|
|
|
# df_city['stat_date'] = df_city['stat_date'].astype('str')
|
|
|
|
# df_city.to_excel(fr'C:\Users\user\Desktop\浙江各地市分电压日电量数据\{city}.xlsx',index=False)
|
|
|
|
# file_Dir = r'C:\Users\鸽子\Desktop\浙江各地市行业电量数据'
|
|
|
|
# for excel in os.listdir(file_Dir):
|
|
|
|
# df1 = pd.read_excel(r'C:\Users\鸽子\Desktop\浙江各地市日电量数据-27-28).xlsx',sheet_name=1)
|
|
|
|
# df1.columns = df1.columns.map(lambda x:x.strip())
|
|
|
|
# df2 = pd.read_excel(os.path.join(file_Dir,excel))
|
|
|
|
# df2['地市'] = df2['地市'].map(lambda x:x.strip())
|
|
|
|
# city = df2['地市'].iloc[0]
|
|
|
|
# col_list = df2.columns
|
|
|
|
# df1 = df1[col_list]
|
|
|
|
# df1 = df1[(df1['stat_date']==20231028)&(df1['地市']==city)]
|
|
|
|
# df1['stat_date'] = pd.to_datetime(df1['stat_date'],format='%Y%m%d')
|
|
|
|
# df2 = pd.concat((df2,df1),ignore_index=True)
|
|
|
|
# df2.to_excel(fr'C:\Users\鸽子\Desktop\浙江各地市行业电量数据\{city}.xlsx')
|
|
|
|
pd.set_option('display.width',None)
|
|
|
|
def normal(df):
|
|
|
|
drop_col = [x for x in df.columns if len(df[df[x]==0])/len(df) >= 0.5]
|
|
|
|
df.drop(columns=drop_col,inplace=True)
|
|
|
|
for col in df.columns:
|
|
|
|
try:
|
|
|
|
high = df[col].describe()['75%'] + 1.5 * (df[col].describe()['75%'] - df[col].describe()['25%'])
|
|
|
|
low = df[col].describe()['25%'] - 1.5 * (df[col].describe()['75%'] - df[col].describe()['25%'])
|
|
|
|
df[col] = df[col].map(lambda x: np.nan if (x >= high) | (x <= low) else x)
|
|
|
|
df[col] = df[col].fillna(method='ffill')
|
|
|
|
df[col] = df[col].fillna(method='bfill')
|
|
|
|
except:
|
|
|
|
pass
|
|
|
|
return df
|
|
|
|
|
|
|
|
# file_dir = './浙江各地市行业电量数据'
|
|
|
|
# city1 = os.listdir(file_dir)[0]
|
|
|
|
# df_city = pd.read_excel(os.path.join(file_dir, city1))
|
|
|
|
# df_city = normal(df_city)
|
|
|
|
# df_city = df_city.drop(columns='地市')
|
|
|
|
# df_city[df_city.columns[1:]] /= 10000
|
|
|
|
# df_city['stat_date'] = df_city['stat_date'].map(lambda x: str(x).strip()[:10])
|
|
|
|
# df_city.stat_date = pd.to_datetime(df_city.stat_date)
|
|
|
|
# print(df_city.describe())
|
|
|
|
#
|
|
|
|
# list_1000 = []
|
|
|
|
# list_100 = []
|
|
|
|
# list_10 = []
|
|
|
|
# list_1 = []
|
|
|
|
# for i in df_city.columns[1:]:
|
|
|
|
# if df_city[i].describe()['mean']>=1000:
|
|
|
|
# list_1000.append(i)
|
|
|
|
# if df_city[i].describe()['mean'] < 1000 and df_city[i].describe()['mean'] >= 100:
|
|
|
|
# list_100.append(i)
|
|
|
|
# if df_city[i].describe()['mean'] < 100 and df_city[i].describe()['mean'] >= 10:
|
|
|
|
# list_10.append(i)
|
|
|
|
# else:
|
|
|
|
# list_1.append(i)
|
|
|
|
# print('list_1:',list_1)
|
|
|
|
# print('list_10:',list_10)
|
|
|
|
# print('list_100:',list_100)
|
|
|
|
# print('list_1000:',list_1000)
|
|
|
|
import pandas as pd
|
|
|
|
|
|
|
|
# 创建一个简单的DataFrame
|
|
|
|
data = pd.DataFrame({'A': [1, 2, 3000, 4, 500],
|
|
|
|
'B': [10, 20, 30, 40, 50]})
|
|
|
|
|
|
|
|
|
|
|
|
Q1 = data['A'].quantile(0.25)
|
|
|
|
Q3 = data['A'].quantile(0.75)
|
|
|
|
IQR = Q3 - Q1
|
|
|
|
|
|
|
|
lower_threshold = Q1 - 1.5 * IQR
|
|
|
|
upper_threshold = Q3 + 1.5 * IQR
|
|
|
|
# 向下移动一行
|
|
|
|
outliers = (data['A'] < lower_threshold) | (data['A'] > upper_threshold)
|
|
|
|
print(outliers)
|
|
|
|
print( data['A'].shift(1))
|
|
|
|
# 替换异常值为临近一个值
|
|
|
|
|
|
|
|
data = {'A': [1, 2, 3, 4, 5],
|
|
|
|
'B': [10, 20, 30, 40, 50]}
|
|
|
|
df = pd.DataFrame(data)
|
|
|
|
|
|
|
|
# 将满足条件的元素替换为新值
|
|
|
|
condition = df['A'] > 3
|
|
|
|
df_new = df.where(condition, other=-1)
|
|
|
|
|
|
|
|
print("原始数据:")
|
|
|
|
print(df)
|
|
|
|
|
|
|
|
print("\n根据条件替换后的数据:")
|
|
|
|
print(df_new)
|
|
|
|
|